Рассвет Сингулярности

Вид материалаДокументы
Глава третья. молекулярная нанотехнология
Будущее молекулярной нанотехнологии
Молекулярная нанотехнология
Промышленное нанопроизводство
Метод подложек и мостков
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   20

ГЛАВА ТРЕТЬЯ.
МОЛЕКУЛЯРНАЯ НАНОТЕХНОЛОГИЯ


 

Многие люди считают, что как только мы создадим первого ассемблерного наноробота и систему передачи ему инструкций, то вскоре после этого появится апокалиптическое оружие или произойдёт нанокатастрофа. Это крайне маловероятно вследствие того факта, что саморепликацию в неконтролируемой среде будет очень трудно сделать нарочно и практически невозможно - по неосторожности. Промышленное нанопроизводство положит конец бедности и всем материальным желаниям. Нанороботы будут очищать воздух, землю и море. Нанотехнологии предоставят нам защиту от биоинженерных супервирусов против которых мы в настоящий момент беззащитны.



 

Будущее молекулярной нанотехнологии


Зрелая молекулярная нанотехнология – это конечная точка длительной истории миниатюризации механических и электрических систем.

Молекулярная нанотехнология – полный контроль над структурой материи на атомном уровне.

Сингулярность – взрыв нанотехнологии, биотехнологии и компьютерной технологии.


Молекулярная нанотехнология даёт возможность строить или изменять любые материальные объекты путём добавления или удаления отдельных атомов под полым внешним контролем. Нанотехнологии осуществляются нанороботами - ассемблерами. Нанороботы - ассемблеры представляют собой машины молекулярного масштаба, которые могут складывать всё из отдельных атомов в соответствии с проектом, передаваемым им внешним компьютером. Нанороботы – ассемблеры создаются другими нанороботами - ассемблерами, что похоже на проблему яйца и курицы. В настоящий момент у нас нет ассемблерных нанороботов. Работающие в области нанотехнологии люди уверены, что скоро мы их будем иметь. Мы уже умеем собирать и помещать в необходимую позицию отдельные атомы c помощью атомных микроскопов (AFM) и сканирующих туннельных микроскопов (STM). У нас есть машины, способные производить молекулы ДНК любой заданной конфигурации. Экспериментальная компьютерная схема находится уже на молекулярном уровне. Зрелая молекулярная нанотехнология является конечной точкой в длинной истории миниатюризации механических и электрических систем. Курцвейл любит говорить, что все формы инженерных решений в среднем уменьшаются в размерах в 5.6 раз за десятилетие. Не многие люди, услышав это, полностью понимают последствия подобного утверждения. Это означает, что мы в результате долгой истории процесса миниатюризации движемся гарантированно к победе зрелой молекулярной нанотехнологии к 2020 году или быстрее (тенденция ускоряется).

Миниатюризация - коренная сила Сингулярности. Компьютеры, достаточно мощные для того, чтобы поддержать генерализованный искусственный интеллект, основаны на ней. Средства реверсивного инжиниринга человеческого мозга основаны на ней. Средства разватия молекулярной биотехнологии основаны на ней. Среди трёх сингулярных технологий (таких как нанотехнология, искусственный интеллект и молекулярная биотехнология) нанотехнологии является лидером в плане возможного изменения даты наступления Сингулярности. Нанотехнологии является сердцем любого передового фронта исследований и разработок. Экономические и военные выгоды привлекают инвестиции и усилия исследователей в область нанотехнологии в большей степени, чем в остальные направления разработок. Включаются все виды промышленности.

ПРОМЫШЛЕННОЕ НАНОПРОИЗВОДСТВО


Для снижения затрат и упрощения дизайна промышленные нанотехнологии будут делать лишь такие продукты, которые сделают наноаварии виртуально невозможными. Нанороботы будут иметь упрощенные компьютеры способные обрабатывать очень ограниченное число инструкций, которые будут  постоянно передаваться им посредством радиосвязи через локальную сеть из центрального компьютера. Продукты будут создаваться поэтапно специализированными нанороботами из монтажных субблоков общего назначения. Нанороботы будут работать в хорошо контролируемой среде без загрязняющих веществ, среди изобилия субблоков и внешнего электропитания. Вне этой среды они бесполезны и не опасны.

Согласно Эрику Дрекслеру наука уже создана. Дело теперь за инженерами.

Провозглашение производства первого ассемблерного наноробота запустит механизм Сингулярности.



 

Метод подложек и мостков


Некоторые из проблем свободного блуждания ассемблерных наноботов кроются в снабжении их энергией, установлении с ними связи и в точном знании того, где они находятся в трех измерениях.

Все эти проблемы решены в подходе подложка/подмостки. Подложкой служит поверхность с электрическим питанием и коммуникационная трубчатая структура наномикроскопического масштаба. Популяция наноассемблеров будет ползать по подложке. Они будут иметь ограниченную способность подзаряжаться электричеством и иметь специализированную память. Необходимость их постоянного контакта c подложкой приведёт к тому, что они не смогут обходиться без подзарядки или обновления информации. Они начнут построение с трехмерных подмостков, лесов, которые будут связаны с подложкой, и займутся расширением структуры трубок в конструкционное пространство. Нанороботы будут взбираться по подмосткам и собирать продукт в трехмерном пространстве вблизи этих лесов. Когда часть продукта будет завершена, то подмостки будут разобраны. В дополнение к обеспечению функций электропитания и коммуникации, подмостки, будучи идеально точными на атомном уровне, будут давать ссылку на текущие трёхмерные пространственные координаты наноробота. Производство продукта может производится параллельно многими нанороботами c полной уверенностью, что все части будут точно связаны в трехмерный каркас.

Для сохранения времени в первоначальной конструкции подмостков, пространство будет погружено в раствор, содержащий компоненты подмостков для самосборки. После фильтрации раствора нанороботы исправят все ошибки в подмостках. Затем начинается конструирование продукта. Другое преимущество этого метода состоит в безопасности. Нанороботы будут зависеть от питания в подложке и на подмостках, и от инструкций.

В нанороботах будет использоваться электрическая энергия, электронно-цифровые коммуникации и контролирующие системы, потому что эти технологии уже хорошо разработаны и масштабирование их в реалиях нанотеха легче, чем создание целиком новых систем или копирование биологических систем.

Нанороботы будут иметь положительный захват на подложке и подмостках, чтобы предотвратить их потерю. Это можно выполнить манипуляторами нанороботов с зажимами на конце, которые будут держаться за поручни или захваты на подложке и подмостках. Точки захвата могут служить также точками связи для получения питания и коммуникаций.

Подпитка монтажными субблоками и отдельными атомами будет осуществляться раствором, циркулирующем в рабочем пространстве сборки. Распознающие электростатические захваты будут брать соответствующие элементы из раствора.