Курс «бжд: Защита в чс и го» 2006 год «основные характеристики и классификация чрезвычайных ситуаций»
Вид материала | Документы |
- Реферат из дисциплины „Цивільна оборона на тему: «Причины возникновения и классификация, 217.08kb.
- Безопасность в чрезвычайных ситуациях источники техногенных чрезвычайных ситуаций классификация, 95.67kb.
- Пропаганда знаний в области защиты населения и территорий от чрезвычайных ситуаций, 42.44kb.
- Планирование действий по предупреждению и ликвидации чрезвычайных ситуаций в мирное, 196.21kb.
- Курс «бжд: Защита в чс и го» 2006 год «аварии на химически опасных объектах», 191.41kb.
- Планирование мероприятий медицинского обеспечения населения в чрезвычайных ситуациях, 289.61kb.
- Курс «бжд: Защита в чс и го» 2006 год «аварии на роо». Часть 2: Опасность радиационных, 162.69kb.
- И гражданской обороны, предупреждения и ликвидации чрезвычайных ситуаций, обеспечения, 264.84kb.
- Доклад о работе районного звена тп рсчс по вопросам гражданской обороны, предупреждения, 85.94kb.
- Курс «бжд: Защита в чс и го» 2006 год «концепция гражданской защиты в рф», 74.4kb.
Курс «БЖД: Защита в ЧС и ГО» - 2006 год
1.«ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И КЛАССИФИКАЦИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ».
1.1.Обстановка с чрезвычайными ситуациями в мире, России и Москве.
Высокое индустриальное развитие современного общества, обеспечивая решение задач экономики, одновременно порождает негативные явления, связанные с аварийностью производства и его экологической опасностью. Растет число крупных промышленных аварий с тяжелыми последствиями, усугубляется экологическая обстановка, Продолжают наносить большой ущерб опасные природные явления и стихийные бедствия.
Обстановка, возникающая под воздействием подобных явлений во всей совокупности исключительных обстоятельств часто характеризуется как чрезвычайная ситуация (ЧС).
Прогнозирование, предупреждение и ликвидация последствий ЧС относится к проблемам, актуальность которых возрастает с каждым годом для всего мирового общества.
За последние 20 лет в природных и техногенных катастрофах погибло около 3 млн., а пострадало более 800 млн. человек и более миллиарда остались без крова. И не случайно специальной резолюцией Генеральной Ассамблеи ООН 90-е годы были объявлены Международным десятилетием по уменьшению опасности катастроф.
Возрастание негативных последствий ЧС, отмечаемое во всем мире, имеет место и на территории нашей страны, чему способствует множество причин.
На территории России эксплуатируется около 2300 объектов повышенной опасности. Аварии и катастрофы на них в среднем происходят один раз в 10-15 лет с ущербом более 2 млн. долларов, раз в 8 - 12 месяцев с ущербом до 1 млн. долларов и раз в 15 - 45 дней с ущербом до 100 тыс. долларов.
Основными объектами, на которые приходится большая часть ЧС, являются радиационно-, химически-, пожаро- и взрывоопасные объекты.
В стране эксплуатируется 11 АЭС, на которых функционирует 34 реактора общей мощностью 18213 Мвт. Еще 6 АЭС находятся в стадии строительства. Только в 30-и километровой зоне вокруг действующих АЭС проживает более 1 млн. человек. Вследствие радиационных аварий происшедших в разные годы в Кыштыме на НПО “Маяк” и в Чернобыле в России к настоящему времени суммарная площадь зон радиоактивного загрязнения местности в пределах внешних границ зон жесткого контроля достигает 32 тысяч кв.км.
Другим источником опасности являются предприятия химической промышленности. В Российской Федерации находится более 1900 химически опасных объектов, расположенных в основном в девяти регионах (Московском, С.Петербургском, Нижегородском, Башкирском, Поволжском, Северо_Кавказском, Уральском, Кемеровском и Ангарском) с населением в зонах опасности около 39 млн человек. Наиболее опасная химическая обстановка складывается в Москве, Волгограде, Дзержинске, Иркутске, Самаре, Кемерово, Новосибирске, Омске, Перми, Уфе и Челябинске). Ежегодно в химических отраслях промышленности происходит около 1500 некатегорированных аварий, связанных с утечкой взрывоопасных и вредных продуктов с загораниями, взрывами и выбросами.
Большую потенциальную опасность на территории страны представляют нефте- и газопромыслы, а также трубопроводы: Уренгой-Помары-Ужгород, Уренгой-Покровск-Новомосковск, Саратов-Н.Новгород и др. Общая протяженность газопроводов более 300 тыс. км.
По территории 5 областей (Самарской, Саратовской, Томбовской, Воронежской и Белгородской) проходит аммиакопровод Тольятти - Одесса протяженностью 1252 км, который одновременно вмещает 125 тыс тонн сильнодействующего ядовитого вещества - аммиака.
Продолжают оставаться источником опасности железные дороги России, на которых ежегодно при перевозке опасных грузов фиксируется около 1000 аварийных происшествий и инцидентов.
Всего же на территории РФ ежегодно происходит по техногенным причинам более 1300 ЧС, в крупнейших из которых погибает около 1500 человек, а 25 тысяч человек являются пострадавшими в той или иной степени. Материальный ущерб от этих ЧС составляет более 1 млрд. долларов. Эти потери по данным РАН возрастают с каждым годом в среднем на 10%.
Следует отметить, что опасность возникновения ЧС в крупном промышленном регионе, каким является Москва, также очень велика, В Москве расположены сотни объектов по производству, хранению и использованию различных АХОВ, пожаро- и взрывоопасные предприятия, ядерные реакторы и объекты с биологически опасными веществами. Особенно тревожно то, что большинство потенциально опасных объектов расположено в непосредственной близости от жилой застройки, учреждений образования, здравоохранения и других мест скопления людей.
В Москве находится около 150 химически опасных объектов с общим запасом АХОВ 4,5 тыс.тонн. Из них на 72-х в год используется более 2600 т аммиака, а около 60 предприятий потребляют в год 15 тыс. т хлора. Расчеты показывают, что в случае аварии системы хладоснабжения на обычной районной овощебазе, содержащей 150 т аммиака, возникает опасность отравления людей, находящихся от места аварии на расстоянии до 5,5 км, а при возникновении крупных выбросов из одной складской емкости на водопроводной станции общие потери населения в Москве могут составить от 40 до 70 тыс. человек.
Дополнительную опасность представляют 25 московских ж.д. станций, на которые ежегодно поступает до 1000 вагонов с АХОВ.
Всего же в зонах возможного химического заражения проживает или работает около 4 млн. человек.
Еще один источник опасности в Москве это 64 повышенно пожароопасных и 25 взрывоопасных объектов. К ним можно отнести Московский нефтеперерабатывающий завод, кустовые базы сжиженного газа, автомобильные газонаполнительные компрессорные станции, магистральные газопроводы высокого давления и др..
Так, например, моделирование последствий аварии на Пушкинской газораздаточной станции, где хранится 540 т сжиженного газа и 2000 баллонов с газом, показало, что в случае взрыва газового облака возникает сплошная зона поражения радиусом в 1,5 км, а радиус разлета баллонов составит 8 км и могут быть поражены города Королев, Пушкино и Ивантеевка.
Большую потенциальную опасность представляют также 11 научно-исследовательских ядерных реакторов, действующих в городе, разрушение которых может привести к последствиям, сравнимым с аварией на Чернобыльской АЭС.
Это, конечно, только прогнозы, хотя и научно обоснованные. Однако статистика, которую ведет Упраление по делам ГО и ЧС г. Москвы, показывает, что ежегодно в столице происходит около двух десятков крупных аварий (половина из них с выходом АХОВ) и несколько тысяч пожаров, в которых гибнут сотни человек и более тысячи получают ранения и поражения. Анализ этой статистики показывает, что масштабы потерь среди населения и материальный ущерб от последствий ЧС имеют тенденцию к увеличению.
Другим источником постоянной опасности для большой части населения являются стихийные бедствия, такие как наводнения, ураганы, землетрясения, сели, природные пожары и др..
Наибольший ущерб на территории России приносят различные наводнения. Территории подверженные действию селенных потоков - это Кабардино-Балкария, Северная Осетия, Краснодарский и Ставропольский края, а также Магаданская, Сахалинская и Камчатская области.
Кроме того, негативные, часто катастрофические последствия, несут землетрясения. Подобные бедствия для территории России характерны в таких сейсмоопасных районах как Северный Кавказ, Забайкалье, Приморье, Сахалин, Курилы и Камчатка.
1.2.Характеристика чрезвычайных ситуаций техногенного характера.
Основные определения и термины.
Высокий уровень жертв среди населения и большой материальный ущерб, наносимый чрезвычайными ситуациями, объясняется, как правило, некомпетентностью органов, ответственных за проведение инженерно-технических мероприятий по предупреждению или снижению последствий ЧС, несвоевременностью принятия мер по оказанию помощи нуждающимся, слабой подготовкой сил, проводящих спасательные работы, а также необученностью населения к действиям в ЧС.
Для успешного проведения мероприятий по предупреждению или снижению последствий ЧС необходимо знать теоретические основы предмета чрезвычайных ситуаций.
Знакомство с системой взглядов и представлений о ЧС техногенного и природного происхождения (характера) начнем с определения основных понятий.
Чрезвычайная ситуация (ЧС) - это обстановка на определенной территории, сложившаяся под воздействием источника чрезвычайной ситуации, которая может повлечь (или повлекла) за собой человеческие жертвы, ущерб здоровью людей или окружающей природной среде, значительные материальные потери и нарушение условий жизнедеятельности людей.
Источник чрезвычайной ситуации - опасное явление природного, техногенного, биолого-социального или военного характера, в результате которого произошла или может возникнуть чрезвычайная ситуация.
Авария - опасное явление техногенного характера, заключающееся в повреждении, выходе из строя, разрушении технических устройств или сооружений.
Стихийное бедствие - опасное явление природного характера.
Источник ЧС биолого-социального характера - широко распространенная инфекционная болезнь людей, сельскохозяйственных животных и растений.
Источник ЧС военного характера - применений современных средств поражения в боевых действиях.
Аварии и стихийные бедствия называются катастрофами , если они повлекли за собой многочисленные человеческие жертвы, значительный материальный ущерб и другие тяжелые последствия.
1.2.1.Классификация ЧС техногенного характера по масштабу и скорости распространения опасности.
В целом ЧС могут классифицироваться по значительному числу признаков, описывающих эти сложные явления с различных сторон их природы и свойств, основными из которых являются признаки типа и вида, принадлежности, масштаба, скорости и др..
Показателями масштаба распространения чрезвычайной ситуации являются не только размеры территории, непосредственно подвергшейся воздействию поражающих факторов, но и возможные косвенные последствия, которые могут представлять собой тяжелые нарушения организационных, экономических, социальных и других важных связей, действовавших на значительных расстояниях, а также тяжесть последствий. Поэтому ЧС, сложившаяся на объекте, из-за ее чрезвычайно тяжелых последствий для экономики страны и ввиду значительных непосредственных потерь и ущерба может иметь, например, ФЕДЕРАЛЬНЫЙ или РЕГИОНАЛЬНЫЙ масштаб.
По масштабу чрезвычайные ситуации классифицируются в зависимости от количества людей, пострадавших в этих ситуациях, людей, у которых оказались нарушены условия жизнедеятельности, а также в зависимости от размера материального ущерба и границ зон распространения поражающих факторов ЧС.
ЧС подразделяются на локальные, местные, территориальные, региональные, федеральные и трансграничные.1
Ликвидация последствий ЧС осуществляется силами и средствами организации, в которой произошла локальная ЧС, органов местного самоуправления, на территории которых произошла местная ЧС, исполнительной властью субъекта РФ, на территории которого произошла территориальная ЧС, исполнительной властью субъектов РФ, оказавшихся в зоне региональной или федеральной ЧС.
При недостаточности собственных сил и средств для ликвидации локальной, местной, территориальной, региональной и федеральной ЧС соответствующие комиссии по ЧС могут обращаться за помощью к вышестоящим комиссиям по ЧС.
Таблица 1.1 Классификация ЧС природного и техногенного характера по масштабу
Критерий (либо) | Локаль-ная | Местная | Террито-риальная | Региональная | Федераль-ная | Трансгранич-ная |
Пострадало, чел | 10 | 10-50 | 50-500 | 50-500 | >500 | |
Нарушены условия жизнедеятельности, чел | 100 | 100-300 | 300-500 | 500-1000 | >1000 | |
Материальный ущерб, тыс. мин. ЗП | 1 | 1-5 | 5-500 | 500-5000 | >5000 | |
Зона ЧС не выходит за пределы территории | объекта | населен-ного пункта, района | субъект РФ | 2 субъекта РФ | >2-х субъектов РФ | за границу РФ, либо захвачена территория РФ |
Силы и средства для ликвидации последствий трансграничной ЧС выделяются по решению Правительства РФ в соответствии с нормами международного права и международными договорами РФ.
К ликвидации последствий ЧС могут привлекаться ВС РФ, Войска ГО РФ, другие войска и воинские формирования в соответствии с законодательством РФ.
Характер мер, принимаемых по защите от поражающего воздействия, во многом определяется степенью внезапности ЧС.
По скорости распространения опасности чрезвычайные события могут быть классифицированы на:
-внезапные (взрывы, транспортные аварии, землетрясения и др.);
-с быстрораспространяющейся опасностью (аварии с выбросом АХОВ, гидродинамические аварии с образованием волны прорыва, пожары);
-с опасностью, распространяющейся с умеренной скоростью (аварии с выбросом радиоактивных веществ, извержения вулканов, паводковые наводнения и др.);
-с медленно распространяющейся опасностью (аварии на промышленных очистных сооружениях и т.п.).
Используя эту классификацию следует иметь ввиду их определенную условность поскольку диапазон характеристик развития событий часто перекрывает границы соседних классификационных градаций.
1.2.2.Классификация ЧС техногенного характера по физической природе и по отраслевой принадлежности.
Познакомимся с принятой в нашей стране общей классификацией ЧС техногенного характера. Классификация построена с опорой на признак базового явления (тип), а также на важнейшие признаки его проявления (вид).
ЧС техногенного характера по физической природе подразделяются на десять типов, каждый из которых в соответствии с отраслевой принадлежностью делится на несколько видов:
1.Транспортные аварии (катастрофы) с пассажирскими и грузовыми поездами и судами, автодорожные и авиационные аварии, аварии на магистральных трубопроводах.
2.Пожары,взрывы в зданиях и сооружениях промышленных объектов, в местах добычи, переработки и хранения легковоспламеняющихся, горючих и взрывчатых веществ, на транспорте, на промышленных объектах под землей.
3.Аварии с выбросом химически опасных, включая аварии с химическими боеприпасами, различаются по месту происшествия (произошедшие при их производстве, хранении или транспортировке).
4.Аварии с выбросом радиоактивных веществ на АЭС, на атомных установках производственного и исследовательского назначения, в т. ч. на транспортных и космических средствах, при промышленных и испытательных ядерных взрывах, с ядерными боеприпасами, утрата радиоактивных источников.
5.Аварии с выбросом биологически опасных веществ на предприятиях, в НИУ, на транспорте.
6.Внезапное обрушение сооружений -обрушение транспортных коммуникаций, обрушение производственных и коммунальных зданий и сооружений.
7.Аварии на электроэнергетических системах на автономных станциях, на сетях и системах, на транспортных контактных электросетях.
8.Аварии на коммунальных системах жизнеобеспечения на канализационных системах, на водопроводных и теплосетях, на коммунальных газопроводах.
9.Аварии на промышленных очистных сооружениях на сооружениях сточных вод, на сооружениях промышленных газов.
10.Гидродинамические аварии прорывы плотин, дамб, шлюзов, перемычек и др. с образованием волн прорыва и катастрофических затоплений; то же с образованием прорывного паводка; то же повлекшие смыв плодородных почв или отложение наносов на обширных территориях.
1.2.3.Фазы ЧС техногенного происхождения.
Анализ развития ЧС техногенного происхождения позволяет выявить некоторые общие закономерности в их протекании, которые можно разделить на 5 условных типовых фаз.
ПЕРВАЯ ФАЗА — накопление отклонений от нормального состояния или процесса.
Обычно аварии предшествует возникновение или накопление дефектов в оборудовании. Длительность этой фазы находится в пределах от нескольких минут до нескольких суток. Сами дефекты или накопления не представляют угрозы, но создают предпосылки для аварии. Такие отклонения случаются часто и в большинстве случаев не приводят к авариям. Однако эта фаза очень важна, так как во время нее возможно предотвращение аварии. Для этого нужно прекратить процесс в опасных условиях.
На ВТОРОЙ ФАЗЕ происходит какое-либо инициирующее событие, обычно неожиданное. В случае аварии на этой фазе у операторов, как правило, не бывает ни времени, ни средств для эффективных действий.
ТРЕТЬЯ ФАЗА — процесс чрезвычайного события, во время которого оказывается воздействие на людей, объекты и природную среду.
ЧЕТВЕРТАЯ ФАЗА — действие остаточных факторов поражения.
ПЯТАЯ ФАЗА — ликвидация последствий ЧС.
Последняя фаза при некоторых ЧС может по времени начинаться еще до завершения третьей фазы и совмещаться с четвертой.
На основе членения процесса протекания ЧС строятся типовые модели их возникновения и развития.
1.3.ЧС природного характера и их классификация.
Еще одним источником постоянной опасности для значительной части населения нашей страны являются стихийные бедствия. Как уже было сказано, они относятся к ЧС природного характера и проявляются как могущественные и разрушительные силы, неподвластные человеку. Стихийные бедствия вызывают экстремальные ситуации, создают угрозу жизни и здоровью людей, нарушают работу объектов экономики, наносят большой материальный ущерб.
Обширная территория России (площадь 17 млн.км., протяженность границ 48 тыс.км.), разнообразие климатических, геологических и гидрометеорологических условий, наличие громадного количества крупных рек, озер, водохранилищ, морей, океанов, горных районов обуславливают большое разнообразие различных опасных природных явлений.
Классификация ЧС природного происхождения, характерных для нашей страны, делит их на шесть типов, каждый из которых в свою очередь подразделяется на несколько видов:
1.Геофизические опасные явления - землетрясения, извержения вулканов.
2. Геологические опасные явления - оползни, сели, лавины, просадка земной поверхности и др.
3. Метеорологические опасные явления - бури (9 - 11 баллов по шкале Боффорта), ураганы (12 - 15 баллов), смерчи, сильные ливни, снегопады, метели, морозы и др.
4. Морские гидрологические опасные явления - тропические циклоны (тайфуны, цунами, сильные волнения моря ( 5 баллов и выше), опасности, связанные с ледовой обстановкой и др.
5. Гидрологические опасные явления на внутренних водоемах - наводнения, половодья, дождевые паводки, нагоны, заторы, зажоры.
6. Природные пожары - лесные, торфяные, степные ( в т.ч. хлебных массивов), а также пожары горючих ископаемых.
1.3.1.Наводнения.
Наибольший ущерб на территории России приносят различные наводнения. Суммарная площадь зон возможных катастрофических затоплений составляет более 72 тыс.кв.км , в которые попадают 101 город, 121 поселок городского типа и 2110 населенных пунктов с общим населением более 7 млн.чел.
Весенние паводки или длительные дожди создают зоны подтоплений, в которых проживает 5,7 млн. чел.
Потенциально опасными являются также зоны возможного затопления от 20 крупнейших ГЭС России, на территории которых проживает 6 млн. чел. В связи с этим представляется крайне важным знание и умение определять параметры и характеристики ожидаемых наводнений и возможность их своевременного прогноза.
Значительное затопление местности в результате подъема уровня воды в реке, озере, море или водохранилище, вызываемое различными причинами, и причиняющее материальный ущерб, наносящее урон здоровью населения или приводящее к гибели людей, называется наводнением.
Затопления не сопровождающиеся ущербом квалифицируются как разлив реки, озера или водохранилища.
Для территории России характерны затопления местности в результате подъема уровня воды в реках. В качестве примеров можно упомянуть периодические наводнения на реке Кума в Ставропольском крае, на Северной Двине в Архангельской области, на реке Терек в Дагестане, на Амуре на Дальнем Востоке, наводнения в Пермской, Свердловской областях, в Башкирии и др.
1.3.1.1.Классификация наводнений.
В зависимости от причин выделяются следующие классификационные группы наводнений:
- связанные с максимальным стоком от весеннего таяния снега - половодья;
- формируемые интенсивными дождями или таянием снега при зимних оттепелях - паводки;
- вызванные сопротивлением, которое водный поток встречает в реке: зажоры, т.е. образование ледяной пробки подо льдом в начале зимы, и заторы при ледоходе;
- вызываемые ветровыми нагонами и
- наводнения при прорыве плотин и оградительных дамб.
По высоте подъема уровня воды, размерам площадей затопления и величине ущерба выделяют:
низкие или малые - с затоплением менее 10% сельхозугодий, нанесением незначительного ущерба и не нарушающие ритма жизни населения; происходят 1 раз в год или 2 года;
высокие - с затоплением 10-15 % угодий (преимущественно сенокосы и пастбища); в густонаселенных районах сопровождаются частичной эвакуацией; наносят ощутимый материальный и моральный ущерб, нарушают хозяйственный и бытовой уклад населения; происходят 1 раз в 20-25 лет;
большие или выдающиеся - охватывают целые речные бассейны, затапливают до 50 % угодий, парализуют хозяйственную деятельность, наносят большой материальный и моральный ущерб, происходят 1 раз в 50 лет;
катастрофические - затопления громадных территорий в пределах одной или нескольких речных систем; затапливается до 75 % угодий, населенные пункты, промышленные предприятия и инженерные коммуникации; такие наводнения приводят к огромным материальным убыткам и гибели людей; случаются на территории РФ не чаще одного раза в 100-200 лет.
1.3.1.2.Прогнозирование наводнений.
Важным условием защиты населения, экономики и территорий от последствий наводнений является прогноз сроков, характера и параметров этих опасных явлений. Госгидромет, на основе данных о запасах влаги в снежных покровах собранных сетью метеостанций по всей территории страны, а также на основе метеопрогнозов моделирует процесс пропуска воды в конкретном речном бассейне и дает прогноз параметров ожидаемого наводнения.
В зависимости от времени упреждения гидрологические прогнозы разделяются на краткосрочные ( до двух недель) и долгосрочные ( с большой заблаговременностью).
Краткосрочные прогнозы производятся посредством решения уравнений гидродинамики и определения уровней и расходов воды в нижнем и промежуточных створах с привязкой их к времени.
Долгосрочные гидрологические прогнозы применяются, как правило, для предсказания масштабов половодий. В основе этих прогнозов лежит водно-балансовый метод, устанавливающий по данным многолетних гидрометеонаблюдений эмпирические зависимости между величиной стока в речном бассейне за время половодья и такими факторами, как запасы воды в снежном покрове, ожидаемые осадки, инфильтрация воды в почву и испарение с поверхности.
По результатам прогноза специально уполномоченные государственные органы и местные органы власти заблаговременно проводят различные защитные мероприятия, которые должны свести к минимуму опасности ожидаемого наводнения в определенном районе.
1.3.2.Землетрясения.
Как уже было сказано, такие опасные природные явления, как землетрясения, характерны только для сейсмоопасных районов, которых в современной России меньше, чем было в границах СССР. Однако, даже за короткий срок существования независимой России произошло уже два разрушительных землетрясения (на Сахалине и на Курилах), которые принесли многочисленные жертвы, значительные разрушения и большой материальный ущерб.
Землетрясения - это подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающихся на большие расстояния в виде упругих колебаний. В зависимости от механизма, изменяющего состояние земной коры и приводящего к возникновению подземных толчков, землетрясения подразделяются на вулканические, обвальные, наведенные и тектонические.
1.3.2.1.Механизм тектонических землетрясений
Наиболее сильными и разрушительными являются тектонические землетрясения, которые происходят на границах тектонических плит, на которые разбита земная кора.
Механизм возникновения подобных землетрясений показан на рисунке 1.1.
Фиг. 1. Движение плит. Фиг. 2.Зацепление плит. Фиг. 3. Высвобождение энергии
Рисунок 1.1 Механизм возникновения тектонического землетрясения
Две тектонические плиты имеют общую границу, по которой происходит скольжение одной плиты относительно другой со скоростями до нескольких сантиметров в год. В каком-то месте происходит зацепление плит и начинается накопление потенциальной энергии в этом месте. Плиты же, как большие пространственные объекты, продолжают свое движение, несколько замедленное на границе. В момент, когда накопленная энергия достигает предела, при котором происходит разрушение зацепления, плиты скачком меняют свое положение, а часть энергии, оставшаяся от разрушительной работы, распространяется в земной коре в виде сейсмической волны.
1.3.2.2.Основные характеристики землетрясений.
Сейсмическая волна, достигшая земной поверхности, вызывает ее колебания, что и является причиной многих опасностей, связанных с землетрясениями. Если бы место накопления энергии было точечным, то сейсмическая волна распространялась бы в земной коре в виде сферы. В действительности зона зацепления имеет протяженность вдоль границы плит и поэтому высвободившаяся энергия распространяется в виде эллипсоида, как показано на рисунке 1.2 , а на поверхности земли линии одинаковой амплитуды колебаний ( изосейсты) будут образовывать не концентрические окружности, а эллипсы.
Важной характеристикой землетрясения является глубина места, где происходит накопление энергии и затем возникает подземный удар, т.е. глубина очага землетрясения ( h ). В различных сейсмических районах глубина очага землетрясения может колебаться от нескольких до 700 км , т.е. находиться в коре, либо в верхней мантии.
Точка в глубине Земли, условный центр очага, называется гипоцентром землетрясения, а ее проекция на поверхность Земли - эпицентром.
Одним из основных параметров, характеризующих силу землетрясения, является интенсивность (амплитуда) колебания грунта на поверхности Земли. Однако амплитуда колебаний характеризует интенсивность землетрясения только в конкретной точке, т.к. она меняется в зависимости от расстояния до эпицентра.
тектонический разлом
эпицентр
h глубина очага
9 8 7 баллов
гипоцентр
очаг
изосейсты
на поверхности Земли
Рисунок 1.2 Характеристики землетрясения
Однозначной характеристикой землетрясения в целом является магнитуда как мера общего количества энергии, излучаемой при сейсмическом толчке в форме упругих волн. Однако, в отличие от интенсивности колебаний грунта, магнитуду нельзя измерить приборами, а возможно только вычислить по измеренным параметрам.
1.3.2.3.Шкалы измерения основных параметров землетрясения и их взаимосвязь.
Для оценки интенсивности землетрясения на поверхности Земли в нашей стране используется международная 12-балльная шкала Медведева-Шпонхойера-Карника (MSK-64), аналогичная принятой в Европе модифицированной шкале Меркалли.
По этой шкале землетрясения делятся на слабые (1-4 балла), сильные ( 5-7 баллов) и разрушительные ( 8 баллов и больше). Конкретная оценка интенсивности ( силы) землетрясения (J) производится с помощью чувствительного прибора - сейсмографа, отмечающего и записывающего колебания земной коры и определяющего их силу и направление.
Для оценки интенсивности землетрясения в гипоцентре в международной практике и в нашей стране используется величина, называемая магнитудой. Магнитуда является мерой энергии, выделяемой в гипоцентре. Для определения магнитуды применяется 9-ти балльная шкала Рихтера2.
Зависимость между излученной энергией и магнитудой землетрясения (М) выражается уравнением:
lg E (дж) = 5,24 + 1,44 M ,
Сильнейшие из когда-либо зарегистрированных землетрясений имели М= 8,9 баллов (в 1933 г у берегов Японии и в 1906 г в Эквадоре). Видимо, этот предел обусловлен физическими свойствами пород, слагающих толщу тектонических плит.
1.3.2.4.Возможности прогноза землетрясений.
ЧС, вызванные землетрясениями, по скорости распространения опасности относятся к внезапным ЧС, поэтому наиболее эффективным способом защиты людей от поражающих факторов землетрясений является своевременное оповещение населения о возможной опасности. Однако точный прогноз землетрясений в настоящее время является проблемным.
В целях прогноза землетрясений на территории РФ развернута Единая система сейсмических наблюдений (ЕССН), включающая в себя сеть сейсмических станций, расположенных в различных точках РФ, и вычислительные обрабатывающие центры.
По результатам наблюдений с большой степенью достоверности можно узнать места возможных землетрясений и их максимальные магнитуды (или балльности).
Проблема прогноза состоит в последовательном уточнении места и времени, в пределах которых следует ожидать разрушительные землетрясения той или иной энергии.
Различают несколько стадий прогноза:
-долгосрочный — на годы,
-среднесрочный — на месяцы,
-краткосрочный — на неделю и меньше,
-непосредственный — на дни и часы.
Сейчас ведутся работы по изучению возможностей краткосрочного прогнозирования землетрясений, то есть достоверного предсказания времени их начала и действительной интенсивности..
В настоящее время известно около 300 предвестников землетрясений, из которых 10—15 неплохо изучены.
Это, прежде всего, аномалии геофизических полей (сейсмического, электрического, магнитного и других), беспокойное поведение животных, птиц, рыб, насекомых.
Другие из предвестников недостаточно изучены и не всегда проявляются, проявление некоторых из них не всегда связано с землетрясением и ввиду этого на них не всегда обращают внимание.
1.4.ЧС военного характера.
Под ЧС военного характера понимаются ЧС в результате которых из-за применения оружия наносится ущерб территориям, прилегающим к районам боевых действий, и населению этих территорий. Рассматривается ущерб, наносимый всеми видами оружия и, в первую очередь, поражающими факторами оружия массового поражения (ОМП).
В рамках данного курса рассматриваются ЧС, вызываемые одним из основных видов ОМП - ядерным оружием.
1.4.1.ОМП и его особенности.
Под ОМП в военной литературе подразумевается оружие, приводящее к массовым потерям противника в живой силе и технике. Применительно к ГО подразумевается, что ОМП приводит одновременно к массовым потерям и гражданского населения, наносит ущерб прилегающим территориям.
Из ОМП в рамках данного курса наиболее подробно будет рассмотрен ядерный взрыв и его отдельные поражающие факторы в той части их свойств, которыми они отличаются от аварий на особо опасных промышленных объектах, рассматриваемых в различных темах.
Последствия действия химического оружия, как вида ОМП, мало отличаются от последствий ЧС, аналогичных масштабов, возникающих при авариях на ХОО и будет рассмотрено в самом общем виде. Кроме того, следует учитывать, что по химическому оружию достигнуты всеобъемлющие международные договоренности.
1.4.1.1.Возможность применения ядерного оружия в настоящее время.
Несмотря на завершение военного противостояния в мире двух противоборствующих систем опасность применения ЯО не устранена. Сейчас помимо государств официально имеющих ЯО (Россия, США, Англия, Франция, Китай, а с 1999 года Индия и Пакистан), существуют страны неофициально обладающие им, а также ряд стран, стремящихся его заполучить. Помимо военного применения нельзя исключать и другие формы применения ЯО, включая и терроризм.
1.4.2.Классификация ядерных боеприпасов по мощности.
ЯО обладает поражающими свойствами, существенно отличающими его от других видов оружия.
Энергия взрывной ядерной реакции значительно превосходит энергию взрыва обычных ВВ. Так при цепной реакции деления ядер 1 кг урана-235 или плутония-239 выделяется столько энергии, сколько дает взрыв 20 000т тротила, а при синтезе ядер всех атомов, имеющихся в 1 кг дейтерия, энергия эквивалентна взрыву 58 000 т тротила.
Мощность ядерных боеприпасов принято оценивать тротиловым эквивалентом (ТЭ).
По этому признаку различают следующие группы ядерных боеприпасов:
сверхмалые с ТЭ до 1 килотонны,
малые 1—10 килотонн,
средние 10—100 килотонн,
крупные 100—1000 килотонн,
сверхкрупные свыше 1000 килотонн.
1.4.3.Классификация взрывов по видам применения.
Характер воздействия поражающих факторов ядерного взрыва на окружающую среду существенно зависит от места взрыва относительно поверхности земли (воды).
По месту взрыва различают:
— воздушный ЯВ — образующаяся при взрыве светящаяся область не касается поверхности земли (воды), высота подъема верхней кромки облака 5—20 км, столб пыли не достигает облака, РЗМ нет;
— наземный ЯВ — светящаяся область касается или частично срезается поверхностью земли, столб пыли достигает радиоактивного облака, что приводит к радиоактивному заражению местности;
— подземный ЯВ- происходит выброс грунта, однако облако не имеет грибовидной формы, ударная волна ослаблена, появляется волна сжатия в грунте, сильное РЗМ в районе взрыва и по следу;
— подводный ЯВ- столб воды с грибом на вершине, радиоактивный туман, затем радиоактивный дождь;
— высотный ЯВ — ударная волна незначительна.
Оперативная цель использования ЯО и его поражающих факторов приводит к выбору вида применения ядерного боеприпаса.
В качестве характеристики ЯВ по высоте используется величина Н, называемая приведенной высотой.
В зависимости от мощности заряда для наземных (надводных) взрывов приведенная высота Н находится в пределах
где Н, м — истинная высота взрыва,
q, т — ТЭ ядерного взрыва.
1.4.4.Основные поражающие факторы ядерного взрыва.
Ядерный взрыв действует на окружающую среду комплексно. Основные поражающие факторы ядерного взрыва и доля их энергии от общей энергии выделяющейся при ЯВ приведены в Таблице 1.2.
Таблица 1.2 Поражающие факторы ЯВ и доля их энергии от общей энергии взрыва
Поражающий фактор ЯВ | Наземный ЯВ | Воздушный ЯВ | Космический ЯВ |
Проникающая радиация (ПР) | 4% | 4% | 50% |
Радиоактивное заражение местности (РЗМ) | 10% | — | — |
Световое излучение | 35% | 39% | — |
Воздушная ударная волна (ВУВ) | 50% | 55% | — |
Электромагнитный импульс (ЭМИ) | 1% | 2% | 50% |
Основные поражающие факторы ядерного взрыва, и в первую очередь ударная волна, будут вызывать крупные аварии на РОО, ХОО и других объектах: разрушения, пожары, взрывы, катастрофические затопления. В результате возникнут дополнительные самостоятельные воздействия на окружающую среду, которые принято называть вторичными поражающими факторами ядерного взрыва. Их масштабы могут быть велики.
Подробнее каждый поражающий фактор ЯВ будет рассмотрен в последующих темах.
Перечень контрольных вопросов
- Основные понятия предмета чрезвычайных ситуаций (определения: чрезвычайная ситуация; источник ЧС).
- Классификация ЧС по масштабу.
- Классификация ЧС по скорости распространения опасности ( классификация с примерами).
- Классификация ЧС по характеру источника ЧС ( виды источников ЧС; определения: авария, стихийное бедствие, катастрофа).
- Классификация ЧС техногенного характера по базовому признаку (типы ЧС с перечислением для каждого нескольких характерных видов).
- Фазы развития ЧС техногенного характера ( состав фаз; характеристика каждой фазы).
- ЧС природного характера: определение и классификация.
- Землетрясения: виды землетрясений; механизм тектонических землетрясений.
- Основные характеристики землетрясений;; шкалы измерения основных параметров землетрясения.
- Классификация ядерных боеприпасов по мощности и видам взрывов.
- Основные поражающие факторы ядерного взрыва.
1 Положение о классификации ЧС природного и техногенного характера (Постановление Правительства РФ от 13.09.1996г N 1094).
2 Магнитуда землетрясения определяется по шкале Рихтера как логарифм отношения амплитуд волн данного землетрясения к амплитудам таких же волн стандартного землетрясения.
Факультет военного обучния