Кристаллы. Виды кристаллов

Вид материалаРеферат

Содержание


Кристаллы. Виды кристаллов.
Кристаллы в природе.
Кристаллизация в пещерах.
Строение кристалла.
Иоганна Кеплера
Выращивание кристаллов.
Подобный материал:
  1   2

МОУ «Ивановская СОШ»




 


Работу выполнила:

Мещанова Кристина, ученица

МОУ «Ивановская СОШ»

7 года обучения.

Научный руководитель:

Сохорева Наталья Александровна


Ивановка, 2010 г.

Содержание.


  1. Введение……………………………………………………………………………………………………………………………………………3
  2. Кристаллы. Виды кристаллов………………………………………………………………………………………………………….4
  3. Строение кристаллов…………………………………………………………………………………………………………………………7
  4. Применение кристаллов на практике……………………………………………………………………………………………14
  5. Выращивание кристаллов……………………………………………………………………………………………………………….16
  6. Заключение………………………………………………………………………………………………………………………………………20



Введение.


Кто из нас не любовался формой и цветом драгоценных камней, идеальной и неповторимой формой снежинок? В чем причина этой красоты и удивительно точной формы?

Давно было замечено, что некоторые твердые тела встречаются в природе в виде кристаллов – тел, грани которых представляют собой правильные многоугольники. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники известняк – ссылка скрыта. В настоящее время изучением многообразия кристаллов занимаются следующие науки:
  • кристаллография - выявляет признаки единства в этом многообразии, исследует свойства и строение, как одиночных кристаллов, так и кристаллических агрегатов.
  • ссылка скрыта изучает оптические свойства кристаллов.
  • ссылка скрыта изучает закономерности образования кристаллов из различных веществ и в разных средах.

Кристаллография – наука не новая. У её истоков стоит М. В. Ломоносов. А вот выращивание искусственных кристаллов дело более позднее. Популярная книга Шубникова "Образование кристаллов" вышла в 1947 году. Эта научная практика выросла из минералогии, науки о кристаллах и аморфных телах. Выращивание кристаллов стало возможным благодаря изучению данных минералогии о кристаллообразовании в природных условиях. Изучая природу кристаллов, определяли состав, из которого они выросли и условия их роста. И теперь эти процессы имитируют, получая кристаллы с заданными свойствами. В деле получения кристаллов принимают участие химики и физики. Если первые разрабатывают технологию роста, то вторые определяют их свойства.

Благодаря кристаллографии известны многие способы искусственного выращивания кристаллов. Некоторые кристаллы даже можно вырастить в домашних условиях. Многие кристаллы являются продуктами жизнедеятельности организмов. Некоторые виды моллюсков обладают способностью наращивать на инородных телах, попавших в раковину, перламутр. За 5 — 10 лет образуется драгоценный камень жемчуг. В природе можно встретить такие кристаллы как горный хрусталь, флюорит, исландский шпат, каменная соль. К сожалению их нельзя вырастить без специальных приборов, но к счастью есть множество других красивых кристаллов, которые можно вырастить в домашних условиях или даже украсить ими дом.

Цель работы: изучить строения кристаллов, способы получения искусственных кристаллов, применение кристаллов на практике.


Кристаллы. Виды кристаллов.

Криста́ллы (от ссылка скрыта κρύσταλλος, первоначально — ссылка скрыта, в дальнейшем — ссылка скрыта, кристалл) — твёрдые тела, в которых ссылка скрыта расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — ссылка скрыта.

Кристаллы — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).

Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку. Если кристаллические решётки пространственно одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа. Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями.

Виды кристаллов

Следует разделить идеальный и реальный кристалл. Идеальный кристалл является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани ит.д. Реальный кристалл всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими ссылка скрыта и правильной формой, но у него сохраняется главное свойство — закономерное положение ссылка скрыта в кристаллической решётке.

Большой одиночный кристалл, имеющий более или менее правильную форму, называют монокристаллом. Характерной особенностью монокристалла является анизотропия, то есть зависимость его физических свойств от направления в кристалле. Анизотропия механических свойств монокристалла сказывается, прежде всего в том, что его прочность в разных направлениях различна. При определенный условиях из расплавов металлов можно получить монокристаллы. Если же просто охладить расплавленное железо, то полученное твердое тело анизотропией обладать не будет. Причину этого помогает понять изучение структуры металла, под микроскопом можно увидеть, что оно состоит из отдельных зерен микроскопических размеров. Каждое такое зерно – это кристалл, который принял неправильную форму потому, что его росту помешали соседние кристаллики. Возникшая зернистая структура называется поликристаллической (поли - много). Поскольку все эти зерна ориентированы беспорядочно, то их анизотропия проявиться не может. Вследствие этого поликристалл изотропен, т. е. его свойства в среднем по всем направлениям одинаковы.


Кристаллы в природе.

Кристаллы замершей воды, т.е. лед и снег, известны всем. Эти кристаллы почти полгода (а в полярных областях и круглый год) покрывают необозримые пространства Земли, лежат на вершинах гор и сползают с них ледниками, плавают айсбергами в океанах.

Ледяной покров реки, массив ледника или айсберга - это, конечно, не один большой кристалл. Плотная масса льда обычно поликристаллическая, т.е. состоит из множества отдельных кристаллов. Их не всегда различишь, потому что они мелки и все срослись вместе. Иногда эти кристаллы можно различить в тающем льду, например, в льдинках весеннего ледохода на реке. Тогда видно,

что  лед состоит как бы из "карандашиков", сросшихся вместе, как в сложенной пачке карандашей: шестигранные столбики параллельны друг другу и стоят торчком к поверхности воды; эти "карандашики" и есть кристаллики льда.

Фотографии и рисунки снежинок можно найти во многих учебниках физики в главах, в которых рассказывают о симметрии. Но этим и ограничивался до недавнего времени интерес ученых к снежным кристаллам. Серьезное изучение зарождения, роста и структуры снежных кристаллов началось не так давно.
Интерес к снежным кристаллам был связан в основном с изучением образования дождя и явлений, происходящих в облаках. Оказалось, что большая часть дождевых капель начинает свою жизнь как снежные кристаллы, тающие, прежде чем они упадут на землю. Однако только холодные, находящиеся на большой высоте перистые облака состоят из кристалликов льда. В основном же облака представляют собой скопление маленьких водяных капелек, удерживающихся в воздухе так же, как частички дыма. Долгие годы оставалось загадкой, как эти капельки вырастают до размеров, достаточных для того, чтобы они упали на землю. Осталось загадкой и то, что часто эти капельки «отказывались» замерзать, хотя температура облака была намного ниже нормальной температуры замерзания воды, то есть ниже 0?С.

Сейчас мы знаем, что переохлажденное облако остается стабильным до тех пор, пока в нем не появиться хотя бы небольшое количество маленьких кристалликов льда, зарождающихся на частичках земной пыли. Молекулы воды, попавшие на кристаллик льда, образуют с ним прочную связь, разорвать которую довольно трудно. Молекулы же воды, которые конденсируются на капле, оторвать сравнительно легко - теплота испарения меньше энергии, необходимой для отрыва молекулы воды от кристаллика льда. Поэтому если облако состоит из калек воды и кристалликов льда, то кристаллы льда растут гораздо быстрее, чем капли. Более того, благодаря росту кристалликов льда уменьшается влажность окружающего воздуха. Это приводит к тому, что водяные капли постепенно испаряются и исчезают. В то же время кристаллики льда вырастают до размеров, достаточных для их падения на землю. Падая, несколько кристалликов могут объединяться, образуя снежинку.

Хотя снежные кристаллы многообразны, их можно классифицировать по трем основным формам; шестиугольные призматические столбики, тонкие шестиугольные пластины и разветвлённые звёзды. Нетрудно объяснить шестигранную форму кристалликов и снежинок. Изучение кристаллов льда с помощью рентгеновских лучей показало, что молекулы воды в кристалле льда расположены так, что каждая из молекул окружена шестью соседями. Центры этих молекул образуют правильный шестиугольник. Что же касается причин различия форм кристаллов, то до недавнего времени ученые не могли прийти к единому мнению. По некоторым гипотезам форма кристалликов должна в основном определяться степенью пересыщения окружающего воздуха парами воды, а не температурой облака. Но исследования показали, что кристаллы различной формы вырастают при различных температурах.

Высокие перистые облака, температура которых ниже – 30?С, состоит в основном из снежных кристаллов в форме призматических столбиков длиной около половины миллиметра. Облака на средних высотах, температура которых изменяется от - 15? до - 30?С, состоят из кристаллов в форме призм и пластин. В низких облаках, температура которых колеблется от - 5?С до 0?С, можно встретить кристаллы в виде шестиугольных пластин, коротких призм и поражающих своей красотой звезд, имеющих диаметр порядка нескольких миллиметров. Эти звезды являются основой снежинок. При температуре в несколько градусов ниже нуля кристаллики слипаются, образуя снежинки.

Всё это говорит о том, что форма кристаллов определяется в основном температурой, при которой они вырастают. Это подтвердили и эксперименты по выращиванию кристаллов льда в лаборатории. Кристаллы льда выращивались в специальной камере, в которой строго контролировалась температура и количество водяных паров. В качестве затравки использовалась тонкая нить. Температура в камере в различных участках вдоль нити была разной.

Опыты показали, что именно температура определяет форму кристалла.
Количество же водяных паров влияет на скорость роста. Однако до сих пор остается невыясненной точная природа роста снежных кристаллов.

Очень интересно изучение роста снежных кристаллов на земле. Часто зимой при резком потеплении ветки деревьев и стены домов покрываются инеем. Облака, в которых зарождаются снежинки, трудно доступны. Иней же легко доступен и за ним можно наблюдать во время его образования. Иней появляется обычно на предметах, имеющих большую теплоёмкость и малую теплопроводность.
При резком потеплении температура этих предметов оказывается ниже температуры окружающего воздуха, и на них конденсируются водяные пары, находящиеся в воздухе. Если паров в воздухе мало, то получаются красивые пушистые хлопья. При большой влажности воздуха холодные предметы покрываются коркой льда. Вода просто конденсируется на холодных предметах и затем замерзает.

Особенно интересны узоры, которыми покрываются зимой окна квартир, автобусов и трамваев. При резком похолодании температура окон становится ниже температуры воздуха в помещении. На них и оседают молекулы пара, находящиеся во влажном воздухе в комнате, образуя красивые узоры. При этом тоже очень важно, чтобы воздух в комнате был не очень влажным. В противном случае пар сначала сконденсируется на стекле и затем замерзает, образуя слой льда. Узоры не появляются на окне, если открыта форточка. В этом случае температура воздуха в комнате у стекла понижается, став такой же, как и температура самого стекла. В ледяных узорах, можно увидеть большинство форм, которые могут принимать снежные кристаллы.

Известно, как опасны для растений весенние или осенние заморозки. Температура почвы и воздуха падает ниже нуля, подпочвенные воды и соки растений замерзают, образуя иголочки кристалликов льда. Эти острые иголки рвут нежные ткани растений, листья сморщиваются, чернеют, стебли и корни разрушаются. После морозных ночей по утрам в лесу и в поле часто можно наблюдать, как на земле вырастает "ледяная трава". Каждый стебелек такой травы - это прозрачный шестигранный кристаллик льда. Ледяные иголочки достигают длины в 1-2см, а иной раз доходят до 10-12см. Случается, что земля оказывается покрытой пластинками льда, стоящими торчком. Вырастая из земли, эти кристаллики льда поднимают на своих головках песок, гальку, камешки весом до 50-100г. Льдинки даже выталкивают из земли и уносят вверх маленькие растения. Иногда ледяная корка обволакивает растение, и корень просвечивает сквозь лед. Бывает и так, что щеточка ледяных иголок сообща поднимает тяжелый камень, сдвинуть который не под силу одному кристаллику. Искрится и горит радужным блеском хрустальная "ледяная трава", но лишь только пригреют лучи солнца, кристаллики изгибаются навстречу солнцу, падают и быстро тают.

В морозное весеннее или осеннее утро, когда солнце еще не успело уничтожить следы ночных заморозков, деревья и кусты покрыты ссылка скрыта. На ветках повисли капли льда. Вглядитесь: внутри ледяных капель видны пучки тонких шестигранных иголочек - кристалликов льда. Покрытые инеем листья кажутся щетками: как щетинки стоят на них блестящие шестигранные столбики кристаллов льда. Сказочным богатством кристаллов, хрустальным нарядом украшен лес. Кристаллики льда, причудливыми узорами которых мы любуемся в снежинках, могут в несколько минут погубить самолет. Обледенение - страшный враг самолетов - тоже результат роста кристаллов.

Кристаллизация в пещерах.

Все природные воды - в океанах, морях, озерах, ручьях и подземных источниках - являются естественными растворами, все они растворяют встречающиеся им породы, и во всех этих растворах происходят сложные явления кристаллизации.


      

 

Особенно интересна кристаллизация подземных вод в пещерах. Капля за каплей просачиваются воды и падают со сводов пещеры вниз. Каждая капелька при этом частично испаряется и остается на потолке пещеры вещество, которое было в ней растворено. Так постепенно образуется на потолке пещеры маленький бугорок, вырастающий затем в сосульку. Эти сосульки сложены из кристалликов. Одна за другой капли мерно падают день за днем, год за годом, века за веками. Звук их падения глухо раздается под сводами. Сосульки все вытягиваются и вытягиваются, а навстречу им начинают расти вверх такие же длинные столбы сосулек со дна пещеры. Иногда сосульки, растущие сверху ссылка скрыта и снизу ссылка скрытассылка скрытавстречаются, срастаются вместе и образуют колонны. Так возникают в подземных пещерах узорчатые, витые гирлянды, причудливые колоннады. Сказочно, необыкновенно красивы подземные чертоги, украшенные фантастическими нагромождениями сталактитов и сталагмитов, разделенные на арки решетками из сталактитов. В природе кристаллы неправильной формы встречаются несравненно чаще, чем правильные многогранники. В руслах рек из-за трения кристаллов о песок и камни углы кристаллов стираются, многогранные кристаллы превращаются в округлые камешки - гальку; от действия воды, ветра, морозов кристаллы растрескиваются, рассыпаются; в горных породах кристаллические зерна мешают, друг другу расти и приобретать неправильные формы.

Более 95% всех горных пород, из которых сложена земная кора, образовались непосредственно при кристаллизации природного расплава, т.е. магмы. Кристаллизация магмы - явление очень сложное. Магма представляет собой смесь многих веществ. У всех этих веществ разные температуры кристаллизации, к тому же температура кристаллизации каждого вещества меняется в зависимости от того, в каких условиях находится магма в данный момент, и от того, какие еще вещества присутствуют в ней. Поэтому при остывании и затвердевании магма разделяется на части: первыми в магме возникают и начинают расти кристаллы того вещества, у которого температура кристаллизации самая высокая. Обычно получается так, что это вещество еще не успеет выделиться полностью, а магма уже остыла до температуры кристаллизации второго минерала, и он тоже начинает выделяться в виде кристаллов. Влияя друг на друга, начинают кристаллизоваться и остальные вещества, между тем как ранее образовавшиеся кристаллы тоже продолжают расти. Так образуются горные породы.

Строение кристалла.


Правильная многогранная форма кристалла, прежде всего, бросается в глаза наблюдателю, и она, конечно же, не составляет главную особенность кристаллического тела, но всё-таки я предлагаю обратить внимание на это явление - идеальную форму кристалла.

Форму, которую принимает ссылка скрыта тогда, когда при его росте устранены все случайные факторы, называют идеальной. Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми рёбрами и обладает симметрией. Как и всякий многогранник, кристалл имеет некоторое число граней P, рёбер R, вершин E, причём эти числа связаны между собой соотношением P+E=R+2. например, у куба 6 граней, 8 вершин и 12 рёбер (6+8=12+2). Для октаэдра (рис.1), додекаэдра (рис.2) это соотношение также справедливо.



 

 

      Куб, октаэдр, додекаэдр представляют собой простые правильные многогранники. В форме правильных многогранников кристаллизуется сравнительно небольшое число кристаллов. В форме куба кристаллизуется поваренная соль, сернистый цинк, в форме октаэдров - алмаз, в форме ромбического додекаэдра - гранат.   Чаще всего вещества кристаллизуются в виде сложных многогранников, т.е. они бывают ограничены несколькими сортами равных между собой граней. Так, например, кристалл имеет обычно 6 восьмиугольных граней, 8 шестиугольных граней и 12 четырёхугольных граней.

Кристаллы одного и того же вещества могут иметь весьма разнообразную форму. Форма кристалла зависит от условий кристаллизации. Цвет также не является характерным признаком кристаллов данного вещества, так как он очень сильно зависит от примесей. Известно, например, что кристаллы плавикового шпата могут быть бесцветными, розовыми, чёрными, фиолетовыми, тёмно-вишнёвыми и золотистыми. Казалось бы, что установление принадлежности двух кристаллов (отличающихся друг от друга и формой и цветом) одному веществу нельзя произвести иначе, как определив их химический состав. Однако кристаллографы установили на первый взгляд в высшей степени поразительный факт: в кристаллах одного вещества углы между соответственными гранями всегда одинаковы (закон постоянства углов).

     Что понимают под соответственными гранями?     В геометрии грани (плоские многоугольники) считаются равными, если они при наложении совпадают всеми своими точками. В кристаллографии равенство граней означает совершенно иное. Грани могут отличаться между собой по форме и всё-таки считаться равными, если они обладают одинаковыми физическими и химическими свойствами. Установить равенство граней в кристаллографическом смысле удаётся иногда путём внешнего их осмотра.

 

                                                            


На рисункеодинаковой штриховкой показаны одинаковые (равные) грани. В кристалле кварца можно установить три сорта граней (на рис.2 они отмечены буквами a,b и c). Хотя в разных кристаллах кварца грани a (b,c) имеют разный размер и форму, они считаются равными.    Закон постоянства углов утверждает, что двугранный угол, образованный гранями a и b (рис.2) в различных кристаллах данного вещества, будет один и тот же. Соответственно во всех кристаллах данного вещества будут равны между собой и двугранные углы, образованные гранями a и c, b и c.

Итак, не форма кристаллов, не размер граней, а угол между ними является определенной величиной для каждого кристалла.

                                 

 

Рис. 3 Рис. 4

 

Для измерения углов между гранями применяют специальный прибор гониометр. Прикладной гониометр (рис. 3) может быть применён для исследования крупных монокристаллов. Более точные измерения выполняют отражательным гониометром, схема которого дана на рисунке 4. Пучок света, идущий от источника А, попадает на грань кристалла и после отражения входит в зрительную трубку Т. При повороте кристалла на определённый угол пучок света вновь попадает в зрительную трубу. По шкале III гониометра отсчитывают угол между гранями. Измерив углы между гранями неизвестного кристалла, можно по специальному каталогу определить химический состав кристалла.

    С явлением ссылка скрыта мы часто встречаемся в окружающей жизни. Симметрична бабочка (рис.1). Форма, рисунок и окраска левого крыла повторяет форму, рисунок и окраску правого.

                                                                        

Рис.1 Рис.2


Если тело можно мысленно пересечь плоскостью так, что каждой точке a тела с одной стороны плоскости будет соответствовать точка b , лежащая по другую сторону плоскости и при том так, что прямая ab, соединяющая эти две точки, перпендикулярна плоскости и делится этой плоскостью пополам, то это тело обладает зеркальной симметрией. Сама плоскость называется в этом случае плоскостью симметрии. Например, плоскость, проведённая через середину рёбер куба параллельно его двум граням, служит плоскостью симметрии куба (рис.2). Куб имеет девять плоскостей симметрии.

Кроме зеркальной симметрии, тела могут обладать еще поворотной симметрией. Тело обладает поворотной симметрией, если при повороте на соответствующий угол все части фигуры совмещаются друг с другом. Ось, вокруг которой происходит вращение тела, называют осью симметрии. Смотря по тому, сколько раз совместится фигура сама с собой при одном полном повороте вокруг оси, ось симметрии имеет различный порядок (первый, второй, третий и т. д.).

Цветок ириса, например, обладает осью симметрии третьего порядка (рис.3), снежинки – осью симметрии шестого порядка. В цветах очень часто наблюдается ось симметрии пятого порядка

Тела могут обладать ещё центром симметрии. Центр симметрии – точка в середине тела, относительно которой любая точка тела имеет другую соответствующую ей точку, лежащую на таком же расстоянии от центра в противоположном направлении. В телах может быть несколько плоскостей симметрии, несколько осей симметрии различного порядка, но не может быть больше одного центра симметрии.

Если в параллелограмме, отогнуть углы в противоположные стороны, то центр квадрата, получившегося в середине этой фигуры, будет центром симметрии, так как он делит пополам все прямые, попарно соединяющие одинаковые точки фигуры. Геометрический центр шара, куба, октаэдра является центром симметрии этих тел. Ось симметрии, плоскость симметрии и центр симметрии называют элементами симметрии.

Элементы симметрии обладают рядом свойств. Вот некоторые из них:
  1. Пересечение двух плоскостей симметрии даёт ось симметрии.
  2. Пересечение трёх взаимно перпендикулярных плоскостей симметрии даёт центр симметрии.
  3. Идеальные формы кристаллов симметричны.

В кристаллах можно найти различные элементы симметрии: плоскость симметрии, ось симметрии, центр симметрии.

Рассмотрим симметрию некоторых простейших кристаллических форм. Кристаллы в форме куба (NaCl , KCl и др.) имеют девять плоскостей симметрии, три из которых проходят параллельно граням куба, а шесть – по диагоналям. Кроме того, куб имеет три оси симметрии 4-го порядка, четыре оси 3-го порядка и шесть осей 2-го порядка  (рис.1), кроме того, он имеет центр симметрии. Всего в кубе 1+9+3+4+6=23 элемента симметрии.



Кристаллы алмаза, калиевых квасцов имеют форму октаэдров. Октаэдры обладают такими же элементами симметрии, что и кубы. показаны оси вращения октаэдра. У кристаллов медного купороса имеется лишь центр симметрии, других элементов симметрии у них нет.

Симметрия, закон постоянства углов и ряд других свойств! Как объяснить такую привередливость кристаллических форм?

     Первой попыткой научного объяснения формы кристаллов считается произведение Иоганна Кеплера " О шестиугольных снежинках"  (1611г.). Кеплер высказал предположение, что форма снежинок (кристалликов льда) есть следствие особых расположений составляющих их частиц .

       В 1783 году французский аббат Рене Жюст Гаюи, минералог по призванию, высказал предположение, что всякий кристалл составлен из параллельно расположенных равных частиц, смежных по целым граням. В 1824 году ученик великого Гаусса, профессор физики во Фрайбурге Л.А.Зеебер для объяснения расширения кристаллов при нагревании предложил заменить многогранники Гаюи их центрами тяжестей. Причём эти центры тяжести образуют правильную систему точек, которая впоследствии была названа пространственной решёткой, а сами точки – узлами пространственной решётки. Например, кристалл поваренной соли NaCl состоит из совокупности большого числа ионов Na+ и Cl-, определённым образом расположенных друг относительно друга. Если изобразить каждый из ионов точкой и соединить их между собой, то можно получить геометрический образ, рисующий внутреннюю структуру идеального кристалла поваренной соли, его пространственную решётку (рис.1).

            Пространственные решётки различных кристаллов различны. На рисунке 2 показана пространственная решётка алмаза, а на рисунке 3 – графита.


                               

Рис.1 Рис.2 Рис.3

           В каждой пространственной решётке можно выделить некоторый повторяющийся элемент её структуры, или, иначе говоря, элементарную ячейку. Пространственные, т.е. объёмные, а не плоские элементарные ячейки – это "кирпичи", прикладыванием которых друг к другу в пространстве строится кристалл. Так, элементарной ячейкой пространственной решётки NaCl является куб (рис. 4а). Очень важно здесь отметить, что существует много способов построения пространственных решёток из элементарных ячеек. "А сколько же их существует?" - спросите вы. Эта сложная задача была решена Е.С.Фёдоровым. Он доказал, что должны существовать 230 способов построения кристалла.

       К наиболее простым элементарным ячейкам относятся куб, объемно-центрированный куб, гранецентрированный куб, гексагональная призма (см. рис. 4,а,б,в,г).

 

                

 

Рис. 4

Догадка о пространственной решётке кристалла – свидетельство о возможности научного предвидения. Ведь в то время (во второй половине XIX в.) не только не существовало доказательства этой гипотезы, но и само существование молекул и атомов вещества многими ставилось под сомнение.  Понятие о пространственной решётке кристалла оказалось очень плодотворным, оно позволило объяснить ряд свойств кристалла.  Известно, например, что кристалл, имеющий идеальную форму, ограничен плоскими гранями и прямыми рёбрами.    Этот факт можно объяснить тем, что плоскость и рёбра идеального кристалла всегда проходят через узлы пространственной решётки.

Становиться также понятным, почему кристаллы одного и того же вещества могут иметь разнообразную форму. Подобно тому, как из данной плоской сетки можно вырезать различные по форме плоскости фигуры, так и кристалл, имея определённую пространственную решётку, может иметь различную форму.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические. Ионные кристаллы построены из чередующихся катионов и анионов, которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания.

Электростатические силы ненаправленные: каждый ион может удержать вокруг себя столько ионов противоположного знака, сколько помещается. Но при этом силы притяжения и отталкивания должны быть уравновешены и должна сохраняться общая электронейтральность кристалла. Все это с учетом размеров ионов приводит к различным кристаллическим структурам. Так, при взаимодействии ионов Na+ и Cl– возникает октаэдрическая координация: каждый ион удерживает около себя шесть ионов противоположного знака, расположенных по вершинам октаэдра.Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ионных кристаллах связи между ионами прочные, поэтому такие кристаллы имеют высокие температуры плавления (801° С для NaCl, 2627° С для СаО).

В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными связями

Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра. Ковалентные кристаллы образуют бор, кремний, германий, мышьяк, ZnS, SiO2, ReO3, TiO2, CuNCS.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Так, кристаллы благородных газов (они построены из изолированных атомов) плавятся уже при очень низких температурах. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот, белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями (H2O, HCl, NH3, CO2 и др.). Этот тип кристаллов характерен также почти для всех органических соединений. Прочность молекулярных кристаллов зависит от размеров и сложности молекул. Так, кристаллы гелия (радиус атома 0,12 нм) плавятся при –271,4°С (под давлением 30 атм), а ксенона (радиус 0,22 нм) – при –111,8° С; кристаллы фтора плавятся при –219,6° С, а иода – при +113,6° С; метана СН4 – при –182,5° С, а триаконтана С30Н62 – при +65,8° С.

Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность, ковкость, высокую отражательную способность (блеск) кристаллов. Структура металлических кристаллов образуется в результате разной упаковки атомов-шаров.