Рекомендации по определению физико-механических свойств мерзлых дисперсных грунтов геофизическими методами Москва Стройиздат 1989
Вид материала | Документы |
3. Сейсмоакустические методы |
- Технические характеристики гусеничного бульдозера shantui sd16, 56.18kb.
- Рекомендации по статистическим методам контроля и оценки прочности бетона с учетом, 1336.84kb.
- Программа дисциплины дпп. Ф. 06 Коллоидная химия, 137.52kb.
- Вопросы к экзамену по дисциплине «поверхностные явления и дисперсные системы», 37.35kb.
- Определение механических характеристик грунтов, 94.24kb.
- Задачи семинара: представление молодыми учеными результатов исследований, полученных, 43.3kb.
- Улучшение физико-механических свойств фанеры на основе модифицированных нафтолами карбамидоформальдегидных, 238.15kb.
- Инженерные методы улучшения свойств грунтов, 142.51kb.
- Рекомендации по применению метода виброзондирования при инженерно-геологических изысканиях, 399.38kb.
- Развитие методов Оценки физико-механических свойств горных пород в массиве для геомеханического, 794.75kb.
Таблица 1
Значения ρm, ρt, Ом·м | λ = 1 | 1 < λ < 10 | λ ³ 10 |
ρm ³ 103 | Равномерно-сетчатая | Слоисто-сетчатая | Слоистая |
ρt ³ 103 | |||
ρm < 103 | Массивная | Линзовидная | - |
ρt < 103 |
2.25. Количественное определение льдистости (прил. 4) за счет льдовыделений Лв производится по номограммам 2-6, прил. 3 для определенного типа криотекстуры следующим образом. При известных литологическом составе грунта и его температуре по номограмме 1, прил. 3 определяется УЭС породы с массивной текстурой ρпр и вычисляются отношения ρm/ρпр и ρt/ρпр, используя значения УЭС, полученные по ВЭЗ (ВЭЗ МДС) и каротажу. Эти значения ρm/ρпр и ρt/ρпр откладывают на соответствующих осях номограммы, после чего, двигаясь по номограмме параллельно оси абсцисс, находят точку пересечения данных ординар ρm/ρпр и ρt/ρпр с кривыми, имеющими одинаковый индекс. Считывая абсциссу найденных точек, определяют значения льдистости Лв (рис. 2 ).

Рис. 2. Ключ к номограммам определения льдистости Лв по данным электроразведки (прил. 3)
3. СЕЙСМОАКУСТИЧЕСКИЕ МЕТОДЫ
3.1. К параметрам пород, определяемым с помощью сейсмоакустических методов, относятся скорости распространения упругих волн, показатели поглощения этих волн и спектральные характеристики.
В рекомендациях основное внимание уделено определению скоростей упругих волн - продольных vР, поперечных vS и поверхностных vR. Показатели поглощения и спектральные характеристики для решения инженерно-геологических задач практически не применяются в силу недостаточной изученности и отсутствия аппаратурного обеспечения.
3.2. Возможность использования скоростей упругих волн для оценки инженерно-геологических характеристик базируется на скоростной дифференциации мерзлых грунтов, обусловленной различием их состава, строения и состояния.
3.3. Зависимости скоростей продольных волн от температуры и влажности для мерзлых пород различного литологического состава представлены в виде графиков, полученных в результате обобщения большого массива экспериментальных данных (прил. 5).
3.4. Взаимосвязь акустических параметров с физическими характеристиками мерзлых грунтов может быть представлена в виде сводных диаграмм (прил. 9), построенных на базе модели изменения грунта при изменении его влажности (прил. 6).
3.5. Возможность использования сейсмоакустических методов для определения динамических упругих параметров основана на существующих теоретических связях между скоростями упругих волн (vР, vS и vR) с одной стороны и динамическими коэффициентами Пуассона μ и модулем Юнга Eg - с другой.

или


где g - плотность грунта.
3.6. Физически обоснованными являются также связи упругих параметров с деформационными и прочностными характеристиками [6, 7]. Количественное их выражение устанавливается, как правило, с помощью корреляции и выражается в виде эмпирических зависимостей:
Ес = 0,6 + 0,16 Еg + 0,01 Еg2;

где Ес - статический модуль упругости; Едеф - модуль деформации.
Связь между скоростью продольных волн и сопротивлением одноосному сжатию (скорость нагружения образца 2 МПа/мин) выражается уравнением

где А, В, С - коэффициенты, зависящие от температуры.
3.7. Криогенные текстуры мерзлых грунтов вызывают, как правило, анизотропию (точнее квазианизотропию) упругих свойств, что может быть положено в основу оценки их строения.
Параметром, определяющим анизотропию, является коэффициент χ, равный отношению скоростей v˝/v┴, где v˝ - скорости упругих волн, распространяющихся в горизонтальном направлении, v┴ - скорости упругих волн, распространяющихся в вертикальном направлении.
3.8. Наибольшей анизотропией обладают грунты со слоистой криогенной текстурой. Коэффициент анизотропии в них при прочих равных условиях зависит от толщины шлиров льда и тем самым от влажности.
3.9. У грунтов с массивной и равномерно-сетчатой криогенной текстурой анизотропия отсутствует (χ = 1).
3.10. В мерзлых грунтах со сложным криогенным строением общая льдистость Ло может быть представлена в виде следующих компонентов (рис. 3):
Ло = Лв + Лц = Л׀׀ + Лрр + Лц = Л׀׀ +Лi,
где Лi = Лрр + Лц; Лв, Лц, Л׀׀, Лрр - лед шлировыделений, лед-цемент, лед, обусловливающий анизотропию, лед равномерно-сетчатой текстуры, соответственно.
Для слоистой текстуры Лрр = 0, для равномерно-сетчатой - Л׀׀ = 0, для массивной Л׀׀ + Лрр = 0.
3.11. Экспериментальные исследования зависимости коэффициента анизотропии от толщины шлиров льда, выполненные в рамках моделей слоистых и слоисто-сетчатых текстур с различными параметрами (температура, влажность, литологический состав), позволили построить номограммы, связывающие Ло, Л׀׀ , Лi).
Анизотропия свойств грунтов со слоисто-сетчатой криогенной текстурой обусловлена только преобладанием толщины шлиров льда в одном из направлений.
3.12. Для определения скоростей упругих волн, как основных информативных параметров в различных точках массива, и характеризующих различные объемы мерзлых грунтов, используется комплекс сейсмоакустических методов, состоящий из сейсмических наблюдений на дневной поверхности методом преломленных волн (МПВ), акустического каротажа (АК), межскважинного просвечивания (МП), вертикального сейсмического профилирования (ВСП) и акустического измерения на образцах.
3.13. С помощью наземной сейсморазведки решаются следующие задачи:
изучение строения массива;
определение скоростей распространения упругих волн;
прослеживание изменения состава и состояния мерзлых пород в плане;
проведение наблюдений за динамикой сезонного промерзания и оттаивания.
3.14. Акустические измерения в скважинах АК и МП обеспечивают:
получение истинных значений скоростей упругих волн;
расчленение разреза по скоростям упругих волн;
оценку состава грунта;
расчет упругих модулей выделенных слоев;
оценку прочностных и деформационных характеристик пород.
3.15. Акустический каротаж (АК) позволяет определять скорости продольных vP┴ и поверхностных vR┴ волн, распространяющихся в вертикальном направлении, при межскважинном просвечивании (МП) определяются скорости продольных vP˝ и поперечных vS˝ волн, распространяющиеся в горизонтальном направлении.

Рис. 3. Модель распределения компонентов льда в объеме мерзлого грунта со слоисто-сетчатой криогенной текстурой
Совместное использование данных АК и МП позволяет:
определять упругую анизотропию исследуемого массива;
оценивать особенности криогенного строения мерзлых пород.
3.16. Акустическое измерение на образцах (керне) используется в основном для:
определения скоростей продольных волн по разным направлениям;
непосредственного сопоставления инженерно-геологических характеристик со скоростями упругих волн.
3.17. Вертикальное сейсмическое профилирование (ВСП) позволяет, опираясь на данные АК и МП, производить детальное расчленение околоскважинного пространства по упругим свойствам.
3.18. Лабораторные акустические измерения служат для установления зависимостей между инженерно-геологическими и акустическими свойствами мерзлых грунтов, которые используются при интерпретации результатов применения наземных и скважинных методов.
3.19. В зависимости от конкретных решаемых задач, сложности геосейсмического разреза, характера объекта и стадии изысканий применяются либо все методы в комплексе, либо некоторые из них.
3.20. Наземная сейсморазведка выполняется в соответствии с «Инженерными изысканиями для строительства. Технические требования к производству геофизических работ. Сейсморазведка. РСН 66-87*».
3.21. Акустические измерения в скважинах и на образцах осуществляются с помощью импульсной ультразвуковой аппаратуры, марки и основные характеристики которой приведены в прил. 1.
3.22. Каротажные измерения ведутся в сухих необсаженных скважинах. Методика проведения работ, специфика измерений в таких скважинах и получение скоростей упругих волн изложены в «Инструкции по применению каротажных методов при инженерных изысканиях для строительства» (РСН 46-79).
3.23. Межскважинное просвечивание выполняется между двумя скважинами, в одной из которых проводится акустический каротаж. Расстояние между скважинами выбирается таким, которое обеспечивает получение сигнала с помощью используемой аппаратуры (для мерзлых грунтов, как правило, X = 70 - 100 см). Для исключения ошибок определения базы прозвучивания по глубине скважин, связанных с отклонением их от вертикали, необходимо учитывать расхождение или сближение стволов скважин. Это может осуществляться с помощью отвесов или по непараллельности штанг над скважиной при их четком расположении по оси скважин.
3.24. МП осуществляется при нахождении излучателя и приемника в разных скважинах на одной глубине и одновременном их подъеме, либо при многократном перекрытии исследуемого участка лучами различных направлений. Шаг наблюдений, принятый в инженерной геофизике, изменяется от 0,1 до 0,5 м в зависимости от неоднородности разреза и решаемых задач.
3.25. Для регистрации продольных волн по первому вступлению датчики должны ориентироваться соосно. Для выделения во вторых вступлениях поперечной волны оси излучателя или приемника должны составлять с направлением просвечивания угол 35-50°. Это достигается поворотом одного или обоих датчиков вокруг оси с помощью штанг, на которых они крепятся жестко.
3.26. При ультразвуковом МП используются датчики поршневого типа, работающие в области низких ультразвуковых частот (25-60 кГц). Предпочтение отдается датчикам с более низкой частотой, обладающим широкой диаграммой направленности, которая позволяет получать интегральные характеристики скоростей упругих волн, распространяющихся вдоль слоистости, v˝.
3.27. Прижим датчиков к стенкам скважин осуществляется с помощью пневмосистем, надежно фиксирующих датчики на каждой глубине. Для осуществления лучшего контакта со стенками скважин излучающая и принимающая поверхности датчиков должны иметь форму усеченного конуса с прижимной площадкой в несколько миллиметров.
3.28. Расчет скоростей продольной и поперечной волн при МП в каждой точке производится по формуле

где х - база просвечивания между устьями скважин на поверхности; D х - поправка за невертикальность скважин; tотс - время первого вступления; D t - поправка; К - множитель цены деления.
Поправка D t и множитель цены деления К определяются в процессе калибровки прибора и датчиков (прил. 7).
3.29. При керноскопии, использующей методику просвечивания, по первому вступлению определяют скорости распространения продольных волн вдоль и поперек керна (vPк˝ и vPк┴ - соответственно). Для корректного использования этих значений необходимо отсутствие градиента температуры в керне и четкая привязка данных к абсолютному значению температуры. Это может достигаться применением специальных способов термостатирования образцов или выполнением измерений при температуре воздуха ниже 0° и достаточно близкой к температуре пород в коренном залегании. При существенной разнице температур необходимо соответствующее выдерживание керна с охраной его от иссушения.
3.30. Лабораторные акустические измерения проводятся в соответствии с [5]. В случае выполнения измерений на образцах ненарушенного строения к ним предъявляются требования, сформулированные в ГОСТ 12071-84.
3.31. Результаты измерений и расчетов скоростей упругих волн АК и МП фиксируются в табличной форме (прил. 8).
3.32. Результаты определения vP┴, vP˝, vR┴, vS˝ и χ представляются в виде диаграмм распределения этих величин по глубине скважины. Если керноскопия выполняется с соблюдением равенства температуры керна температуре в коренном залегании, ее результаты (vPк┴, vPк˝, χк) могут также быть представлены на соответствующих диаграммах.
3.33. Интерпретация результатов измерения скоростей упругих волн ведется в следующих направлениях: оценка состава мерзлого грунта, определение упругих, деформационных и прочностных свойств, оценка криогенного строения и его параметров.
3.34. Опорными значениями скоростей продольных волн, используемых в номограммах, являются значения:
vP┴ (результаты АК), если χ > 1 (горизонтально-слоистая текстура);
vP˝ (результаты МП), если χ < 1 (вертикально-слоистая текстура);
vP┴ или vP˝, если χ ≈ 1 (массивная, либо равномерно-сетчатая текстура).
3.35. С помощью номограмм (прил. 5) оценивается литологический состав в том случае, если известны температура и суммарная влажность, полученная по данным радиоизотопного метода. Возможно и определение влажности при известном литологическом составе и температуре.
Если сочетание параметров vР, Wc и θ не укладывается в рамки приведенных зависимостей, необходимо прибегать к методу интерполяции между номограммами для грунтов разного литологического состава.
3.36. Диаграммы (прил. 9), построенные по экспериментальным данным на базе модели, описанной в прил. 6, позволяют определять физические характеристики грунта g, gск, n, q по известным литологическому составу и значениям vР и θ.
3.37. Значения vР и vR либо vР и vS используются для расчета коэффициента Пуассона μ и динамических модулей Юнга Eg по формулам, приведенным в п. 3.5, для чего необходимы дополнительные данные о плотности g, получаемые при радиоизотопном каротаже.
Модуль Юнга и коэффициент Пуассона являются основой для расчета модуля сдвига G и объемного расширения К по формулам:
G = Еg/2 (1 + μ);
К = Eg/3 (1 - 2μ).
3.38. Для определения μ и Еg может быть использована специальная номограмма (рис. 4). Отправной точкой является отношение vR/vP, откладываемое на оси абсцисс; ордината пересечения его с кривой 1 дает значение μ; далее определяется точка пересечения ординаты, имеющей значение μ, с кривой 2, затем абсциссы этой точки с прямой 3, соответствующей известному значению g, и далее ординаты этой точки с прямой 4, соответствующей значению vP; абсцисса этой точки является искомым значением Eg.
Модули μ и Еg могут быть определены также с помощью номограмм, приведенных в прил. 10.
3.39. При определении модулей упругости следует иметь в виду, что приведенные формулы и номограммы строго справедливы лишь для изотропных сред.

Рис. 4. Номограмма для определения динамического модуля Юнга и ключ к ее использованию
3.40. Оценка величины модуля деформации Едеф осуществляется по значениям скоростей продольных волн с помощью формулы, приведенной в п. 3.6, либо с помощью ее графического выражения (прил. 10, рис. 2).
3.41. График корреляционной связи между динамическим и статическим модулями упругости Eg и Ес для мерзлых пород, приведенной в прил. 10, рис. 3, дает возможность оценки статического модуля упругости по результатам акустических измерений.
3.42. Определение временного сопротивления одноосному сжатию sсж осуществляется с помощью номограмм (прил. 10, рис. 4), построенных на основании экспериментальных данных для дисперсных грунтов и льда и связывающих sсж со значениями vР и θ.
3.43. Значения Ес и sсж, полученные по приведенным корреляционным связям, справедливы только для грунтов с массивной криотекстурой, на которых они получены.
3.44. Многочисленные расчеты, подтвержденные экспериментальными исследованиями, показывают, что точность определения скоростей упругих волн составляет 1-1,5 %, динамических упругих параметров 2-2,5 % и характеристик, оцененных с помощью корреляционных связей sсж, Едеф, Ес - 10-15 %.

Рис. 5. Ключ к номограммам определения компонентов льдистости (прил. 11)
Следует иметь в виду, что при межскважинном просвечивании точность определения скоростей упругих волн снижается в соответствии с точностью определения баз.
3.45. Оценка криогенного строения выполняется в два этапа:
качественная оценка типа криогенной текстуры;
количественное определение компонентов льдистости.
3.46. Качественная оценка типа криогенной текстуры производится на основании сопоставления скоростей распространения волн в горизонтальном и вертикальном направлениях и их отношения χ, см. пп. 3.8; 3.9; 3.34. При χ = 1 грунты имеют массивную текстуру, если Wс £ Wг, и равномерно-сетчатую текстуру, если Wс > Wг, (Wг - влажность грунтовых прослоев, характерная для данной литологической разности).
3.47. Количественное определение компонентов льдистости (п. 3.10) выполняется с помощью номограмм, составленных для суглинков и глин при различных температурах (прил. 11, 12).
По номограммам определяется точка пересечения значений χ (рис. 5, ордината) и Wоб, величина которой является индексом соответствующей кривой, нанесенной на номограмме или построенной путем интерполяции. Кривая равных значений Лi, проходящая через эту точку, определяет льдистость грунта с равномерно-распределенным льдом; абсцисса точки определяет Лi - льдистость, обусловливающую анизотропию. Величина Лi за вычетом Лц дает значение Лрр, толщина преобладающих по мощности шлиров льда определяется как Л׀׀ + Лрр/3.