Первая. Общая микробиология. Глава место микроорганизмов среди

Вид материалаДокументы
Методы микроскопического исследования
Микроскопия в световом оптическом микроскопе
Правила микроскопии с иммерсионной системой
Микроскопия в темном поле.
Фазовоконтрастная микроскопия.
Люминесцентная микроскопия.
Электронная микроскопия.
Глава4. физиология микроорганизмов
Химический состав микроорганизмов
Метаболизм (обмен веществ) микроорганизмов
Транспорт питательных веществ
Рост и размножение микроорганизмов
Образование микробами пигментов, ароматических веществ. Светящиеся микроорганизмы
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   19
ГЛАВА 3.

МЕТОДЫ МИКРОСКОПИЧЕСКОГО ИССЛЕДОВАНИЯ

МИКРОБОВ


Методы микроскопического исследования используют для изуче­ния формы и структуры клетки, подвижности микробов.

Микроскопия в световом оптическом микроскопе

Световой микроскоп состоит из механической и оптической час­ти. Механическая часть микроскопа - это штатив, состоящий из осно­вания и колонки, к которой прикреплены тубус и предметный столик. В колонке имеются две винтовые системы для установки тубуса. Макрометрический винт служит для установки на фокус при слабых уве­личениях (объектив х8), а при сильных объективах (х40, х90) - доя первоначальной, грубой установки. Для более точной установки слу­жит микрометрический винт. Это одна из наиболее хрупких частей микроскопа, и работа с ним требует особой осторожности.

Оптическая часть микроскопа состоит из осветительного аппарата, объективов и окуляров.

Осветительный аппарат расположен под предметным столиком. В большинстве микроскопов свет отражается от зеркала и, пройдя через линзы конденсора, фокусируется в плоскости препарата. В сов­ременных микроскопах освещение достигается с помощью вмонтиро­ванного в микроскоп источника света.

Объективы представляют собой систему линз в металлической оп­раве. Передняя (фронтальная) линза - самая маленькая. От нее глав­ным образом зависит увеличение микроскопа. Расположенные за ней линзы называются коррекционными, так как они предназначены для устранения недостатков оптического изображения.

На оправе объективов обозначается создаваемое ими увеличение: х8, х40, х90. Объективы х 8 (малое увеличение) и х40 - это сухие объективы. При работе с ними между фронтальной линзой объектива

и препаратом находится воздух. При этом, вследствие разницы пока­зателей преломления стекла (1,52) и воздуха (1,0), часть световых лу­чей, проходя через оптически неоднородные среды, рассеивается. При микроскопии с объективами х 8 и х 40 это не имеет значения. Но мик­робы настолько малы, что для их исследования необходимо более силь­ное увеличение, которое дает объектив х90. При работе с этим объек­тивом рассеивание света должно быть устранено. Для этого между пред­метным стеклом и линзой помещают каплю жидкости, показатель пре­ломления которой равен показателю преломления стекла. Более всего для этого подходит кедровое масло или его заменители. При микро­скопии объектив погружают в каплю масла, поэтому объектив назы­вают иммерсионным (лат. immercio - погружение), а масло - иммерси­онным маслом. Иммерсионный объектив требует особо осторожного обращения. Фронтальная линза имеет настолько короткое фокусное расстояние до исследуемого объекта, что опускать объектив нужно медленно, глядя сбоку, чтобы не раздавить препарат, что связано с порчей линзы.

Окуляры имеют две линзы: верхняя называется глазной г нижняя -собирательной. Окуляры обозначают по тому увеличению, которое они дают, например: х7, х10, х15. Окуляр дает увеличение, ничего не до­бавляя в деталях изображения, данного объективом.

Чтобы определить общее увеличение микроскопа, нужно умножить увеличение объектива на увеличение окуляра.

Разрешающая способность светового микроскопа - это наимень­шее расстояние между точками в препарате, которые еще не слива­ются в одно изображение. Для светового микроскопа эта способность зависит от длины волны видимого света, и предел разрешения опти­ческого микроскопа равен 0,2 мкм.

Изображение объекта в микроскопе увеличенное и обратное.

Правила микроскопии с иммерсионной системой

Работать сидя.

Поднять конденсор до уровня предметного столика.

Глядя на верхнюю поверхность конденсора, осветить поле зрения.

Установить иммерсионный объектив.

На предметный столик поместить препарат с каплей Иммерсион­ного масла.

Глядя сбоку, осторожно опустить тубус с помощью макровинта до соприкосновения объектива с маслом и чуть-чуть погрузить его в мас­ло, не доводя до соприкосновения с предметным стеклом.

Глядя в окуляр, медленно поднимать макровинтом тубус до по­лучения изображения в поле зрения. Не разрешается опускать макровинтом тубус, глядя в окуляр.

Микровинтом, вращая его не более чем вполоборота, найти ясное изображение и рассматривать его. Держать оба глаза открытыми. Ле­вой рукой передвигать препарат для общего обозрения. Если предметный столик подвижный - можно для более мелких и точных движений пользоваться боковыми винтами. Правой рукой слегка вращать мик­ровинт, чтобы препарат всегда был в фокусе.

После просмотра препарата поднять тубус при помощи макро­винта, снять препарат, установить объектив х8, вытереть мягкой сал­феткой масло с иммерсионного объектива.

Микроскопия в темном поле. Для микроскопии в темном поле при­меняются особые конденсоры, у которых центральная часть линзы за­темнена, за исключением узкой полоски по периферии. Кроме того, боковые поверхности конденсора представляют собой не прямую ли­нию, а параболу. Внутренняя поверхность такого темнопольного па­раболоид-конденсора зеркальная. Лучи света попадают в темнопольный конденсор только через узкую полоску по периферии линзы. За­тем они отражаются от его зеркальной поверхности и, если в поле зре­ния нет никакого объекта, то ни один луч не попадает в объектив. Поле зрения кажется совершенно черным. Если же в поле зрения есть какие-то объекты, например, микробы, то лучи, отраженные от них, попада­ют в объектив, и их можно видеть светящимися на темном фоне.

Это явление подобно тому, которое наблюдается в комнате с за­темненными окнами, когда в косых лучах света, проникающих через щель, видны танцующие пылинки, при обычном освещении невидимые (феномен Тиндаля).

За неимением специального темнопольного конденсора можно обычный конденсор превратить в темнопольный, поместив между его линзами кружок черной бумаги, немногим меньше по диаметру линзы конденсора. В таком "приспособленном" конденсоре можно наблю­дать достаточно ясно живых светящихся микробов, но поле зрения бу­дет не черным, а серым.

Преимущество микроскопии в темном поле зрения состоит в том, что при этом можно видеть объекты более мелкие. Кроме того, в тем­ном поле зрения лучше наблюдать в живом состоянии такие микробы, как лептоспиры, которые в водной среде не преломляют света и поэто­му в проходящем свете совершенно прозрачны.

Фазовоконтрастная микроскопия. При прохождении через непроз­рачные объекты, такие как окрашенные препараты микроорганизмов, амплитуда световых волн уменьшается. Такие изменения, называемые амплитудными, улавливаются человеческим глазом. Поэтому ок­рашенные микробы видны в обычном микроскопе.

Объекты, разные по плотности, но одинаковые по прозрачности, не меняют амплитуды световых волн, а только изменяют фазу. Такие фазовые изменения человеческий глаз не способен уловить. Поэтому живые клетки микробов, их структурные элементы в живом состоянии прозрачны в проходящем свете и для нас невидимы.

Фазовоконтрастный микроскоп превращает фазовые изменения в амплитудные. Поэтому структурные элементы с различной плотнос­тью выглядят как более светлые и более темные. Это позволяет наблю­дать не только фазовые объекты целиком, но и структурные элементы микробов.

Фазовоконтрастная микроскопия осуществляется с помощью обыч­ного светового микроскопа, в котором заменяют объективы и конден­сор на специальные - фазово-контрастные.

Люминесцентная микроскопия. Люминесценция - это свечение объек­та за счет поглощенной световой энергии коротковолновой или ульт­рафиолетовой части спектра. Большинство микроорганизмов не обла­дает собственной люминесценцией, поэтому пользуются наведенной люминесценцией путем обработки микробов флюорохромами. Чаще всего используют акридин-оранж, аурамин, изоцианат флюоресцеина, которые светятся под влиянием ультрафиолетовых лучей. Некото­рые флюорохромы избирательно связываются с определенными структурами, такими, как ядро, цитоплазма, включения. Таким образом, можно дифференцировать эти структуры. Препараты, обработан­ные флюорохромами, микроскопируют в специальных люминесцент­ных микроскопах, в которых объекты исследуются в ультрафиолето­вых лучах.

Люминесцентная микроскопия используется для реакции иммунофлюоресценции (РИФ). В этой реакции для определения вида мик­робов препарат-мазок из исследуемого материала обрабатывают спе­цифической антисывороткой, соединенной с флюорохромом. Если в материале содержатся микробы, соответствующие антисыворотке, то при микроскопии препарата в люминесцентном микроскопе наблюдается свечение микробов.

Электронная микроскопия. Возможности разрешающей способнос­ти светового микроскопа ограничены не качеством линз, а длиной вол­ны видимого света. В электронном микроскопе вместо световых лучей используется поток электронов. Источником электронов является рас­каленная вольфрамовая нить. Роль линз в электронном микроскопе выполняет круговое магнитное поле. Вначале электроны попадают в магнитный конденсор и сходятся в одной точке на рассматриваемый предмет, лежащий в безвоздушной среде на тонкой пленке коллодия. Затем пучок электронов проходит через объективную и проекционные линзы. Наблюдатель видит не поток электронов, а изображение, которое проецируется на флуоресцирующий экран или фотографическую пленку. Возникновение изображения на экране обусловлено тем, что различные части исследуемого объекта обладают неодинаковой про­ницаемостью для электронов. Электроноплотные участки выглядят тем­ными, электронопрозрачные - светлыми.

С помощью электронного микроскопа можно наблюдать вирусы, детали морфологии микробов. Используя метод иммуноэлектронной микроскопии (ИЭМ), можно видеть и сфотографировать вирусы с при­соединившимися к ним антителами.


ГЛАВА4. ФИЗИОЛОГИЯ МИКРООРГАНИЗМОВ


Как все живые существа, микроорганизмы осуществляют процес­сы питания, дыхания, роста и размножения. В то же время для мик­роорганизмов характерны некоторые особенности, отличающие их от высших организмов. Будучи одноклеточными, микроорганизмы самос­тоятельно осуществляют все жизненные процессы, и регуляция этих про­цессов заложена в каждой клетке.


Химический состав микроорганизмов

Значительную часть клетки составляет вода - от 70 до 85% от об­щей массы. Вода служит средой, в которой протекают разнообразные химические процессы микробной клетки. В ней растворяются кристал­лоиды, диссоциируют электролиты, формируются коллоиды. Кроме того, сама вода как химический компонент, непосредственно участву­ет в реакциях гидролиза белков, углеводов и липоидов. Количество воды в клетке постоянно, и это постоянство регулируется цитоплазматической мембраной.

Сухой остаток микробной клетки составляет от 15% до 30%. Из них половина приходится на белки. Это простые белки - протеины и сложные белки - протеиды. Аминокислотный состав белков характе­рен для различных видов микроорганизмов. Белки входят в состав ферментов. Белками являются экзотоксины, с которыми связана патогенность целого ряда микробов; белками являются многие антигены, с ними связана специфичность микробов.

Нуклеиновые кислоты являются важнейшими компонентами микробов. В ДНК зашифрована вся наследственная информация клет­ки, а РНК участвует в процессах считывания информации, передачи се на рибосомы и синтеза в них белка - соответственно: матричная РНК (мРНК), рибосомальная РНК (рРНК) и транспортная РНК (тРНК).

Установлено, что состав нуклеотидов ДНК, а именно соотноше­ния гуанин + цитозин/аденин + тимин является стабильным признаком. Поэтому его можно использовать для определения таксономического положения бактерий. Например, у стафилококков процентное содер­жание Г+Ц-28%-39%, а у сходных с ними микрококков Г+Ц=65%-83%, следовательно, они принадлежат к разным родам.

Липиды у бактерий, не содержащих жировые вещества в виде вклю­чений, составляют около 10% сухого остатка. У бактерий, имеющих особые жировые включения, например, у микобактерий туберкулеза, количество липидов достигает 40%, что обеспечивает этим бактериям устойчивость к кислотам, щелочам, спиртам. В состав липидов входят нейтральные жиры, фосфолипиды и свободные жирные кислоты. Фосфолипиды являются составной частью цитоплазматической мембра­ны, принимают участие в транспорте веществ. Липиды входят в со­став липополисахарида клеточной стенки грамотрицательных бакте­рий - это их эндотоксин и О-антиген.

Углеводы выполняют в клетке пластическую роль и являются ис­точником энергии, необходимым для обменных процессов. Количество углеводов в клетке непостоянно даже у одной и той же бактерии (от 10% до 30%) и зависит не только от рода и вида, но и от условий разви­тия микробов. Бактерии содержат моносахариды, дисахариды, полисахариды. У некоторых бактерий полисахаридный антиген настолько специфичен, что позволяет разграничить отдельные типы внутри вида. Например, капсульный антиген пневмококков, поверхностный С-антиген стрептококков.

Минеральные вещества микроорганизмов разнообразны, коли­чество и состав их зависит от вида микробов и состава питательной среды. Основные элементы, необходимые для жизнедеятельности клет­ки - натрий, калий, фосфор, кальций, магний, железо, медь, сера, хлор, кремний. Некоторые металлы - железо, кальций - входят в состав фер­ментов. Фосфор входит в состав аденозинтрифосфорной кислоты, ко­торая является своеобразным аккумулятором энергии. Ионы металлов участвуют в поддержании постоянства осмотического давления, реак­ции среды (рН) в клетке. Реакция цитоплазмы слабощелочная. Заряд на поверхности бактерий - отрицательный, у спирохет - положитель­ный. Благодаря одноименному заряду, бактерии в физрастворе обра­зуют равномерно-мутную взвесь. Склеивание их между собой и обра­зование хлопьев наблюдается при реакции агглютинации, а также при потере поверхностного заряда клетки, например, у шероховатых R-форм бактерий.


Метаболизм (обмен веществ) микроорганизмов

Питание микробов (конструктивный метаболизм).

Как у всего живого, метаболизм микроорганизмов состоит из двух взаимосвязанных, одновременно протекающих, но противоположных процессов - анаболизма, или конструктивного метаболизма, и катабо­лизма, или энергетического метаболизма.

Обмен веществ у микроорганизмов имеет свои особенности.

1) Быстрота и интенсивность обменных процессов. За сутки мик­робная клетка может переработать такое количество питательных ве­ществ, которое превышает ее собственный вес в 30-40 раз.

2) Выраженная приспособляемость к изменяющимся условиям внешней среды.

3) Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.

Для роста и жизнедеятельности микроорганизмов обязательно на­личие в среде обитания питательных материалов для построения ком­понентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, на­трия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микро­бов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.

В зависимости от способности усваивать органические или не­органические источники углерода и азота микроорганизмы делятся

на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают уг­лерод из углекислоты (СО2) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

Гетеротрофы (греч. heteros - другой, trophic - питающийся) исполь­зуют сложные органические соединения, такие как углеводы, спирты, аминокислоты, органические кислоты. Среди гетеротрофных микро­организмов различают сапрофитов (греч. sapros - гнилой, phyton - рас­тение) и паразитов. Сапрофиты используют мертвые органические соединения. Они широко распространены в природе, разлагают органи­ческие вещества, отбросы, участвуя таким образом в санитарной очи­стке окружающей среды. Паразиты живут и размножаются в тканях человека, животных, растений.

Микробы могут изменять свой тип питания с паразитического на сапрофитный. Их можно культивировать вне организма, на пита­тельных средах. Среди прокариотов исключение составляют риккетсии и хламидии, которые могут жить только в живых клетках хозяина. Их называют строгими, или облигатными паразитами (лат. obligatus - обязательный). Облигатными паразитами являются также все вирусы.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспорти­руются внутрь клетки.

Проникновение питательных веществ в клетку происходит с по­мощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диф­фузии по градиенту концентрации, то есть вследствие того, что кон­центрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту кон­центрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внеш­ней стороне цитоплазматической мембраны и отдает его на внутрен­ней стороне в неизмененном виде. Затем свободный переносчик пере­мещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышаю­щих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов - это четвертый механизм передачи ве­ществ. Это активный перенос химически измененных молекул, с учас­тием пермеаз. Например, такое простое вещество, как глюкоза, пере­носится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пас­сивной диффузии или путем облегченной диффузии с участием пермеаз.

Ферменты

Ферменты - катализаторы биологических процессов. Характер­ным свойством ферментов является их специфичность. Каждый фер­мент участвует только в определенной реакции с определенным хи­мическим соединением.

Ферменты, которые выделяются бактериальной клеткой в окру­жающую среду и осуществляют внеклеточное переваривание, называ­ются экзоферментами. К экзоферментам относится также беталактамаза, которая разрушает пенициллин и другие бета-лактамные анти­биотики, защищая бактерии от их действия.

Эндоферменты участвуют в процессах метаболизма внутри клетки.

Для бактерий, в силу их малых размеров, характерна высокая сте­пень саморегуляции продукции ферментов. В этом отношении фермен­ты можно разделить на конститутивные и адаптивные. Конститутив­ные ферменты продуцируются клеткой постоянно. Адаптивные фер­менты, в свою очередь, подразделяются на индуцируемые и ингибируемые. Продукция индуцируемых ферментов происходит в присутствии субстрата. Например, ферменты, расщепляющие лактозу, образуются в клетке в только присутствии этого углевода. Продукция ингибируемых ферментов, напротив, подавляется присутствием в среде конеч­ного субстрата в достаточно большой концентрации (например, трип-тофана).

Многие патогенные бактерии, кроме ферментов обмена, выделя­ют ферменты, являющиеся факторами вирулентности. Например, та­кие ферменты, как гиалуронидаза, коллагеназа, дезоксирибонуклеаза, нейраминидаза способствуют проникновению и распространению патогенного микроба в организме.

Способность бактерий продуцировать определенные ферменты -признак настолько постоянный, что его используют для идентифика­ции, то есть определения вида бактерий. Определяют сахаролитические свойства (ферментацию углеводов) и протеолитические свойства (фер­ментацию белков и пептона).

Для микробов характерна высокая ферментативная активность. Это используется в промышленности. В медицине находят применение такие лечебные средства, как стрептокиназа (фибринолизин стреп­тококков), террилитин (протеаза Aspergillus terricola). Ферменты мик­робного происхождения - липазы и протеазы, входящие в состав мою­щих средств и стиральных порошков, расщепляют белковые и жировые загрязнения до воднорастворимых веществ, которые легко смываются водой.

Биологическое окисление (энергетический метаболизм)

Процесс биологического окисления дает энергию, необходимую для жизни клетки. Сущность процесса заключается в последователь­ном окислении субстратов с постепенным освобождением энергии. Энергия запасается в молекулах АТФ.

Окислению подвергаются углеводы, спирты, органические кис­лоты, жиры и другие вещества. Но для большинства микроорганизмов источником энергии служат гексозы, в частности, глюкоза.

У микроорганизмов существует два типа биологического окис­ления: аэробный и анаэробный. При аэробном типе участвует кисло­род, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называет­ся брожением.

Начальный этап анаэробного расщепления глюкозы с образова­нием пировиноградной кислоты (ПВК) происходит одинаково. Эта

кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.

При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с об­разованием воды. Конечные продукты аэробного окисления глюкозы - диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ.

При анаэробном типе биологического окисления энергия образу­ется в результате брожений. При спиртовом брожении ПВК превра­щается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения - масляная кислота. При процессах брожения на одну моле­кулу глюкозы образуется только 2 молекулы АТФ.

Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он так­же установил явление, которое впоследствии было названо "эффектом Пастера": прекращение процесса брожения при широком доступе кис­лорода.

Анаэробиоз существует только среди прокариотов. Все микро­организмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободно­го кислорода. К ним можно отнести микобактерии туберкулеза, хо­лерный вибрион, чудесную палочку. ,

Облигатные или строгие анаэробы получают энергию при от­сутствии доступа кислорода. Они имеют неполный набор окислитель­но-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов - СО2 и Н2О. Более того, в присутствии свобод­ного кислорода образуются токсические соединения: перекись водо­рода Н2О2 и свободный перекисный радикал кислорода О2. Аэробы при этом не погибают, так как продуцируют ферменты, разрушающие эти токсические соединения (супероксиддисмутазу и каталазу). Спорообразующие анаэробы в этих условиях прекращают размножение и превращаются в споры. Неспорообразующие анаэробы погибают даже при кратковременном контакте с кислородом.

К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам - бактероиды, пептобактерии, бифидумбактерии.

Большинство патогенных бактерий - факультативные (условные) анаэробы, например, энтеробактерии. Они имеют полный набор фер­ментов и при широком доступе кислорода окисляют глюкозу до ко­нечных продуктов; при низком содержании кислорода они вызывают брожение.

Микроаэрофилы размножаются в присутствии небольших коли­честв кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.

Рост и размножение микроорганизмов

Термином "рост" обозначают увеличение размеров отдельной осо­би, а "размножение" - увеличение числа особей в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамположительных бактерий из клеточной стен­ки и цитоплазматической мембраны образуется перегородка, враста­ющая внутрь. У грамотрицательных бактерий образуется перетяжка, и затем происходит разделение клетки на две особи.

Делению клеток предшествует репликация бактериальной хромо­сомы по полуконсервативному типу. При этом двуспиральная цепь ДНК раскручивается, каждая нить достраивается комплиментарной нитью и в результате каждая дочерняя клетка получает одну мате­ринскую нить и одну вновь образованную.

Быстрота размножения разных видов бактерий различна. Боль­шинство бактерий делятся каждые 15-30 минут. Микобактерии тубер­кулеза делятся медленно - одно деление за 18 часов, спирохеты - одно деление за 10 часов.

Если посеять бактерии в жидкую питательную среду определен­ного объема и затем каждый час брать пробу и определять количество живых бактерий в такой замкнутой среде и составить график, на кото­ром по оси абсцисс откладывать время в часах, а по оси ординат лога­рифм количества живых бактерий, то получим кривую роста бактерий. Рост бактерий подразделяют на несколько фаз (рис. 5):

1) латентная фаза (лаг-фаза) - бактерии адаптируются к пита­тельной среде, количество их не увеличивается;

2) фаза логарифмического ро­ста - количество бактерий увели­чивается в геометрической про­грессии;

3) фаза стационарного роста, во время которой число вновь об­разованных бактерий уравнивает­ся числом погибших, и количество живых бактерий остается постоян­ным, достигая максимального уровня. Это М-концентрация - величина, характерная для каждого вида бактерий;

4) фаза отмирания, когда число отмирающих клеток начинает пре­обладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.

Культура бактерий в такой замкнутой несменяющейся среде на­зывается периодической. Если же в засеянный объем непрерывно подают свежую питательную среду и удаляют такое же количество жидкости, то такую культуру называют непрерывной. Количество живых бактерий в такой культуре будет постоянно в М-концентрации. Непрерывное куль­тивирование применяют в микробиологической промышленности.

Образование микробами пигментов, ароматических веществ. Светящиеся микроорганизмы

Некоторые виды микробов вырабатывают красящие вещества -пигменты. Если пигмент растворим в воде, то окрашенными предс­тавляются и колонии микробов, и питательная среда. Например, си­ний пигмент, выделяемый синегнойной палочкой (Pseudomonas aeruginosa), окрашивает среду в синий цвет. Пигменты, растворимые в орга­нических растворителях, но нерастворимые в воде, не окрашивают питательную среду. Такой пигмент красного цвета, так называемый продигиозан, растворимый в спирте, выделяет чудесная палочка (Serratia marcescens). К этой же группе относятся пигменты желтого, оранжевого, красного цвета, характерные для кокковой воздушной микрофлоры. У некоторых видов микробов пигменты настолько проч­но связаны с протоплазмой клетки, что не растворяются ни в воде, ни в органических растворителях. Среди патогенных бактерий такие пиг­менты золотистого, палевого, лимонно-желтого цвета образуют ста­филококки.

Цвет пигмента используется для определения вида бактерий.

Некоторые микроорганизмы в процессе метаболизма вырабатыва­ют ароматические вещества. Например, для синегнойной палочки ха­рактерен запах жасмина. Характерный запах сыров, сливочного мас­ла, особый "букет" вина объясняется жизнедеятельностью микробов, которые используются для производства этих продуктов.

Свечение (люминесценция) микробов происходит в результате ос­вобождения энергии при биологическом окислении субстрата. Свечение бывает тем интенсивнее, чем сильнее приток кислорода Светящиеся бактерии были названы фотобактериями. Они придают свечение че­шуе рыб в море, грибам, гниющим деревьям, пищевым продуктам, на поверхности которых размножаются. Свечение может наблюдаться при низких температурах, например, в холодильнике. Патогенных для че­ловека среди фотогенных бактерий не установлено.

Свечение пищевых продуктов, вызванное бактериями, не приво­дит к их порче, и даже может свидетельствовать о том. что в этих про­дуктах не происходит гниения, поскольку оно прекращается при разви­тии гнилостных микроорганизмов.