Архитектура ЭВМ. Лекция 4

Вид материалаЛекция

Содержание


Будущее DVD-формата
Многослойные оптические диски
Голографическая память
Часть 5. FLASH
Fibre Channel SCSI
Подобный материал:
1   2   3   4   5

Будущее DVD-формата


На смену DVD в недалеком будущем придет Blue-Ray и другие форматы нового поколения. Диски Blue-Ray имеют меньшее расстояние между соседними дорожками - 0,32 микрон. Это позволило увеличить объем одностороннего диска до 30 Гб. Стандарт Blue-Ray disc поддерживают более десяти крупнейших компаний, в том числе Sony, Hitachi, LG, Thomson, Philips, NEC и другие. Для записи таких дисков понадобится привод с лазером более коротковолнового - "синего" диапазона (405 нм. DVD-приводы имеют "красный" лазер с длиной волны 650 нм).

Еще альтернатива будущего - поддержанный DVD Forum стандарт HD-DVD, разработанный Toshiba и NEC. При использовании стандарта HD-DVD емкость диска увеличивается до 15 Гб на слой, при этом для выпуска таких дисков требуется лишь небольшая доработка оборудования.

И там и там используется голубой лазер для чтения и записи информации, но емкость дисков HD-DVD существенно ниже: однослойный диск вмещает 15 Гб данных, двухслойный - 30 Гб. Зато HD-DVD остается совместимым с DVD на физическом уровне, чего нельзя сказать о Blue Ray

Многослойные оптические диски


FMD - Fluorescent Multilayer Disk. диск размером со стандартный CD вмещает до терабайта данных, при этом скорость чтения с него может достигать 1Гб/сек. Молодая компания Constellation 3D (C3D).

Диск совершенно прозрачен. Дело в том, что в основе работы флуоресцентных дисков лежит совершенно другой принцип, нежели у CD или DVD. У традиционных оптических накопителей лазерный луч отражается от непрозрачной подложки диска, и за счет этого происходит считывание; в FMD принимается не отраженный от подложки свет, а испускаемый веществом диска под воздействием лазера, т.е. флуоресцентный. Другое отличие - FMD-диски многослойные, число слоев в существующих образцах - несколько десятков, но планируется довести их количество до 1000.

У CD или DVD проблему многослойности до сих пор не удалось решить, поскольку вследствие интерференции и некоторых других факторов практически невозможно различать отраженный свет от разных слоев диска, а вот во флуоресцентных дисках это делается довольно легко.


Голографическая память


Голографическая память базируется на тех же принципах оптики, что и более традиционные оптические диски. Основное отличие заключается в том, что для записи информации в этом случае используется не поверхность (плоскость), и даже не набор слоев, как предполагается сделать в FMD-дисках, а весь объем носителя. Из-за этого плотность записи получается чрезвычайно высокой: по предварительным расчетам, в один кубический сантиметр можно будет "запихнуть" более 1 Тб информации! Кроме огромной емкости специалисты отмечают еще и возможность высочайшей скорости при чтении/записи. Если голографические накопители данных будут реализованы, то они окажутся куда быстрее и вместительнее, чем их магнитные собратья. Высокая скорость работы голографической памяти достигается за счет того, что одновременно может считываться и записываться большой блок информации, так называемая "страница".

Почему же память называется голографической? голограмма - это трехмерное изображение какого-нибудь предмета или, по крайней мере, такое изображение, которое воспринимается по-разному в зависимости от того угла, под которым на него смотрят.

Для записи информации тоже используется лазерный луч. Он направляется на специальную управляющую матрицу (световой модулятор), элементы которой кодируют биты информации, например, темный элемент - нолик, светлый - единичка, свет от матрицы падает уже непосредственно на носитель (диск), а точнее ту его часть, где формируется изображение матрицы. Для того чтобы данные с диска можно было прочитать, нужно осветить его участок лазером с той же длиной волны, тогда отраженный свет воспроизведет изображение управляющей матрицы, ее точную копию.

Долговечность дисков: R диски хранятся дольше RW.


Часть 5. FLASH


изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR. Годом позже Toshiba разработала архитектуру NAND, которая и сегодня используется наряду с той же NOR в микросхемах флэш


Технология NOR


флэш-чип представляет из себя транзистор с двумя изолированными затворами: управляющим (control) и плавающим (floating). Важной особенностью последнего является способность удерживать электроны в течение долгого времени.

Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, — нулю. (NOR 0 0 – 1 , 0 1 – 0, 1 0 – 0, 1 1 - 0)

При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.



Для хранения 1 бита информации задействуется только один элемент (транзистор). В энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор. Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс -> снизить себестоимость.

Intel уже выпускает память StrataFlash, каждая ячейка которой может хранить по 2 бита информации. Кроме того, существуют пробные образцы, с 4-х и даже 9-и битными ячейками! В такой памяти используются технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что заряд их делится на несколько уровней, каждому из которых в соответствие ставится определенная комбинация бит. Теоретически прочитать/записать можно и более 4-х бит, однако, на практике возникают проблемы с устранением шумов и с постепенной утечкой электронов при продолжительном хранении.

Технология NAND - аналогично, только при считывании сигнала значение трактуется по-другому (0 0 – 1, 0 1 – 1, 1 0 – 1, 1 1 - 0)

Сфера применения какого-либо типа флэш-памяти зависит в первую очередь от его скоростных показателей и надежности хранения информации. Адресное пространство NOR-памяти позволяет работать с отдельными байтами или словами (2 байта). В NAND ячейки группируются в небольшие блоки (по аналогии с кластером жесткого диска). Из этого следует, что при последовательном чтении и записи преимущество по скорости будет у NAND. Однако с другой стороны NAND значительно проигрывает в операциях с произвольным доступом и не позволяет напрямую работать с байтами информации. К примеру, для изменения одного байта требуется:
  • считать в буфер блок информации, в котором он находится
  • в буфере изменить нужный байт
  • записать блок с измененным байтом обратно


Если еще ко времени выполнения перечисленных операций прибавить задержки на выборку блока и на доступ, то получим отнюдь неконкурентоспособные с NOR показатели (отмечу, что именно для случая побайтовой записи). Другое дело последовательная запись/чтение — здесь NAND наоборот показывает значительно более высокие скоростные характеристики. Поэтому, а также из-за возможностей увеличения объема памяти без увеличения размеров микросхемы, NAND-флэш нашел применение в качестве хранителя больших объемов информации и для ее переноса. Наиболее распространенные сейчас устройства, основанные на этом типе памяти, это флэшдрайвы и карты памяти. Что касается NOR-флэша, то чипы с такой организацией используются в качестве хранителей программного кода (BIOS, RAM карманных компьютеров, мобилок и т.п.), иногда реализовываются в виде интегрированных решений (ОЗУ, ПЗУ и процессор на одной мини-плате, а то и в одном чипе).


ДЗ : померить скорость флэш памяти.


Fibre Channel SCSI


Последовательный интерфейс FCAL (Fibre Channel Arbitrated Loop - арбитражное кольцо волоконного канала) по реализации ближе к интерфейсам локальных сетей. Этот интерфейс, известный также и как Fibre Channel SCSI, может иметь как электрическую (коаксиальный кабель), так и оптоволоконную реализацию. В обоих случаях частота 800 МГц обеспечивает скорость передачи данных 100 Мбайт/с. Медный кабель допускает длину шины до 30 м, оптический - до 10 км. Здесь используется иной протокольный и физический уровни интерфейса и имеется возможность подключения к шине до 126 устройств (а не 8 или 16, как для параллельного интерфейса).