Курносов Ю. В., Конотопов П. Ю
Вид материала | Документы |
- Курносов Ю. В., Конотопов, 1160.74kb.
- Договор № на оказание услуг, 160.36kb.
- Курносов Владимир Анатольевич Волжск 2007 Оглавление Введение 3-5 Глава I. Юродство, 355.39kb.
- Литература по курсу «История экономики и экономических учений» Основная История мировой, 54.21kb.
- Теория и история финансовых кризисов в России 08. 00. 01 экономическая теория (экономическая, 450.88kb.
Очевидно, что системный анализ проходит по схеме от этапа применения неформальных методов, через этап применения формальных — вновь к неформальным. Как видим, этапы анализа и синтеза чередуются, в ряде случаев процесс протекает циклически: результаты, полученные на предыдущем этапе работы, выступают в качестве исходных данных для последующего, после чего могут быть переданы на вход предыдущего этапа для уточнения данных и урегулирования выявленных противоречий. Особенно часто это происходит на начальных этапах (анализ и синтез цели на фоне существующих ограничений) и на этапах моделирования и принятия решения.
Можно говорить о существовании некоего обобщенного алгоритма проведения системно-кибернетического исследования, относительно которого могут допускаться незначительные отклонения, но в целом сохраняющем свою структуру для большинства приложений системного анализа. Алгоритм, приблизительно отображающий схему проведения системно-кибернетического исследования, представлен на рисунке приведенном ниже (рис. 2.1).
Рисунок 2.1 — Алгоритм проведения системно-кибернетического исследования.
Итак, мы вновь обращаемся к понятиям модели, формальной системы, поскольку без них системное исследование приобретает черты донаучного исследования (например, алхимии, хотя даже на этом этапе развития методологии науки знаковые модели уже завоевывали признание в научных кругах). Достаточно вспомнить астрологию, по сей день оперирующую символикой и методологией, разработанной в средние века.
Следует признать, что астрология — это тоже весьма интересная отрасль знания, методологию которой следовало бы изучить многим экспертам-аналитикам. Речь идет не о способе познания мира, а о методиках синтеза разрозненных фрагментов «знания» и методиках представления аналитических выводов67. Метод синтеза сложных знаковых моделей и моделей интерпретации здесь начал применяться намного раньше, чем где бы то ни было, а арсенал современной астрологии пополнился за счет применения методик ТРИЗ (теории рационализации и изобретательства, активно использующей комбинаторные методы для синтеза нового знания — об этом, как всегда, позже). Как и всякая авантюрная сфера деятельности, астрология привлекает и высокоинтеллектуальных специалистов, готовых в числе первых принять на вооружение последние достижения науки, да и которые сами в состоянии разработать весьма эффективные интеллектуальные технологии. Многим доводилось слышать о Дельфийском Оракуле, но не все знают, насколько мощная и разветвленная сеть сбора информации и информационно-аналитическая служба обеспечивала высокий «рейтинг» очередного Оракула, выступавшего в роли средства доведения результатов анализа. Интересно, что и сейчас существует немало примеров того, как астрологи активно вмешиваются в политическую сферу жизни общества, а к их мнению прислушиваются ведущие политики. Это и неудивительно — часто аналитики, утратив надежду получить влияние на «сильных мира сего» рациональным путем, переходят к публичной деятельности, демонстрируя поразительную точность прогноза. Кроме того, астрология и астрологи часто используются в качестве инструмента проведения информационно-психологических акций (например, формирования тревожных ожиданий в обществе) — благо, что современная массовая культура создает благодатную почву для этого.
Однако, вернемся к моделям... Модели играют в жизни человека чрезвычайно важную роль — достаточно сказать, что в основе поведения человека, как системы разумной, лежит субъективная модель мира, создаваемая им на протяжении всей жизни на основе анализа личного и социального опыта. Заметим, что анализ этого опыта, в свою очередь, осуществляется на основе ранее усвоенных (образующих аксиоматику модельного мира) знаний. Наблюдая кадры, на которых запечатлены террористические акты, совершаемые террористами-смертниками, мы, сегодняшние, не можем понять: как человек в здравом уме может решиться на такой шаг. Журналисты часто описывают экстремистов в тех же терминах, что и параноиков, но разве их поступки так уж необъяснимы? Давайте просто вспомним: так ли давно мы воспринимали подобные акты, как отчаянную попытку угнетенного человека изменить этот мир к лучшему? Очевидно, что модели мира, которыми мы оперировали всего 20 лет назад, оценивая поведение этих людей, были совершенно иными, нежели нынешние.
Правда, между теми моделями, которые используются человеком в его повседневной деятельности и моделями, используемыми в системных исследованиях — дистанция огромного размера. Но все же…
Какими бывают модели? И какие средства формализации используются для представления знаний о системах?
Для начала еще раз обратимся к понятию модели и ее свойствам. Итак...
Модель — это совокупность логических, математических или иных объектов, связей и соотношений, отображающих с необходимой или предельно достижимой степенью подобия некоторый фрагмент реальности, подлежащий изучению, а также описание всех существенных свойств моделируемого объекта. Можно рассматривать различные аспекты подобия между моделью и фрагментов реального мира:
- физическое подобие, когда модель и объект имеют близкую физическую сущность;
- функциональное подобие, когда сходны их функции;
- динамическое подобие, проявляющееся в сходстве динамики изменения состояния объекта;
- топологическое подобие, проявляющееся в сходстве пространственной (в широком смысле, в том числе — организационной) структуры и иные.
Соответственно различают физические, функциональные, динамические, топологические и иные виды моделей. Кроме того, по принципу реализации выделяют натурные, полунатурные, имитационные и теоретические модели. В зависимости от обстоятельств (целей, условий) в аналитической практике используются разные модели.
Очевидно, что степень формализации моделей может варьироваться в широких пределах: от моделей, не подвергнутых процедурам формализации, до моделей строго формальных. Выбор формальных средств, используемых для представления моделей, не является произвольным и определяется двумя аспектами-компонентами модели:
- моделью интерпретации или интерфейсным компонентом (характеризующим процесс двунаправленного взаимодействия с потребителем, в роли которого может выступать как человек, так и автоматизированная система, реализующая функции ввода и считывания данных);
- сущностным компонентом (характеризующим специфику моделируемого фрагмента реальности, закономерности его функционирования, структуры и т. п.).
Если взглянуть на любую модель с точки зрения, характерной для специалиста в области разработки программного обеспечения, знакомого с объектным подходом к программированию, то модель предстанет в виде совокупности инкапсулированных (помещенных одна в другую) моделей. При этом модель интерпретации (адаптации, интерфейса) представляет собой внешнюю оболочку модели, а сущностная модель фрагмента реальности (объекта, процесса явления и т. п.) заключена внутрь (см. рис. 2.2).
Рис. 2.2. Инкапсуляция моделей
В отличие от простых — одноуровневых — моделей, сложные модели имеют несколько уровней вложенности, и на каждом уровне вложенности может существовать несколько разнородных моделей, однако, и для них изложенный выше подход остается справедливым (см. рис 2.3). Принцип матрешки широко используется при синтезе моделей самой различной семантики.
Рисунок 2.3 — Сложная модель, как иерархия модельных объектов.
Во многих культурах этот принцип выражен в декоративно-прикладном искусстве — русская матрешка, китайские ажурные костяные шары, вырезанные из монолита — эти неутилитарные игрушки не случайно привлекают внимание представителей разных культур.
Характерно, что принцип иерархичного представления моделей применим и к естественно-языковым (лингвистическим) моделям, однако, в силу специфики устройства знаковой системы, используемой в естественных языках, эта иерархичность не всегда может быть воспринята потребителем. Примером иерархической организации естественно-языковой модели может служить и эта книга с ее системой рубрикации и композиционной спецификой.
Для простейших, неформализованных моделей интерфейсный компонент модели (модель интерпретации68) присутствует неявно — для них моделей модель интерпретации представляет собой часть модели мира потребителя, относительно которой он в состоянии без привлечения дополнительных средств интерпретации воспринимать семантическую компоненту модели. Так, для моделей, выраженных на естественном языке, в роли модели интерпретации выступает субъективная модель языка (его синтаксиса, семантики), которой располагает потребитель модели. Для моделей формальных эту роль играют специализированные тезаурусы, позволяющие осуществить преобразование синтаксиса и семантики модели к виду, доступному пониманию потребителя.
Собственно, модель интерпретации значима как инструмент согласования формальной системы, используемой для выражения сущностной компоненты модели, со способом представления информации, характерным для потребителя. В этом смысле в качестве модели интерпретации для некоторого текста может выступать перечень используемых сокращений, для карты — легенда с расшифровкой условных обозначений и т. д. В качестве примера применения модели интерпретации может рассматриваться научно-популярный текст, в котором на доступном уровне излагаются достаточно сложные научные положения, резюме к отчету о проведенных научных исследованиях и иные виды некоторым образом организованных и упорядоченных данных.
Сущностная компонента модели является отражением некоторых сущностей, процессов и явлений реального мира и, в отличие от модели интерпретации, не может быть отображена с применением произвольно выбранных средств формализации предметной области. Для каждой предметной области существует некоторый диапазон приемлемых средств формального выражения отношений и сущностей реального мира, отличающихся степенью детализации их выражения. Степень же детализации с одной стороны определяется спецификой задачи, а с другой — спецификой системы или процесса.
Перечислим наиболее значимые факторы, оказывающие влияние на выбор адекватной степени детализации модели:
- назначение модели и цель исследования (аналитическая, прогностическая модель и т. д., исследовательская (научная) модель, кибернетическая (управленческая) модель);
- избирательность исследования (выражению средствами модели подлежит система или процесс в целом или их отдельные аспекты);
- степенью полноты знаний о системе или процессах, подлежащих моделированию;
- динамические характеристики моделируемой системы/процесса;
- структура моделируемой системы;
- условия наблюдаемости (непрерывное, кусочно-непрерывное, дискретное);
- характеристика среды и параметры возмущающих воздействий;
- время, доступное для синтеза модели/производства вычислений;
- динамические и точностные характеристики системы сбора информации (точность результатов не может быть выше точности измерений);
- динамические и точностные характеристики системы управления (чаще всего, нет смысла анализировать динамические и статические параметры системы или процесса, если отсутствуют средства управления, обеспечивающие необходимую скорость и точность доведения управлеяющих воздействий)
- точностные характеристики методов, используемых для обработки данных;
- характеристики платформы, используемой для реализации модели (в случае применения специальных технологических средств, например — ЭВМ);
- точностные характеристики реализации методов, с учетом ограничений технологической платформы, используемой их реализации и иные.
Приведенный перечень, несмотря на его громоздкость, нельзя назвать исчерпывающим, однако уже и его достаточно для понимания того, что модель должна удовлетворять целому ряду требований, а процесс моделирования не является процессом сугубо абстрактным, отвлеченным. По существу, на этапе синтеза модели решаются те же самые задачи системного исследования, но применительно к задаче построения модели, обеспечивающей решение задач следующего уровня. Так же, как и в иных случаях производится анализ объективных и субъективных ограничений, определяются оптимальные значения параметров, но не системы, а ее модели.
Рассмотрим, каким образом сущностная компонента модели влияет на выбор средств формального представления моделей.
Ранее мы отмечали, что для каждой предметной области существует некий «коридор», в рамках которого допустим выбор тех или иных средств формализации. Лишь в крайне редких случаях выбор средств формального представления практически не ограничен и плавно варьируется в диапазоне от вербальных до алгебраических средств — в таких условиях выбор того или иного варианта может определяться исключительно субъективными предпочтениями исследователя. Однако уже малейшее стеснение в ресурсах приводит к необходимости сужения области выбора.
В целом, процесс синтеза модели может быть представлен как процесс постепенного повышения уровня формализации и поэтапного продвижения в иерархии знаний следующего вида:
- гипотеза, предположение;
- теория, концепция;
- закономерность;
- закон.
Располагая знаниями высшего уровня (зная закон) исследователь мене всего стеснен в выборе средств моделирования. Однако в большинстве же случаев такой свободы нет. Например, отсутствие достаточного объема знаний о системе не позволяет построить модель более высокой степени формализации, нежели вербальная или логико-лингвистическая модель типа сценария. Такая ситуация возникает тогда, когда причинно-следственные отношения не выявлены, структура системы и отношения между компонентами установлены лишь частично и подлежат уточнению, что соответствует знаниям уровня гипотезы или теории в предложенной иерархии.
В то же время, даже располагая знанием закона, исследователь не всегда может выбрать произвольный способ формального представления системы, поскольку формальный аппарат, как правило, не универсален и привязан к конкретной предметной области и условиям наблюдений. Случаи, когда различные формальные методы, будучи применены к описанию одного и того же феномена, обеспечивают одинаковые по точности и вычислительным затратам результаты встречаются редко — как правило, речь идет о существовании различий в составе и характеристиках исходных данных, компенсируемых за счет тех или иных приемов. Это означает, что среди многообразия методов существует некий метод, который является наиболее приемлемым, оптимальным с некоторой точки зрения. Попробуйте-ка несколькими способами описать простейшее равноускоренное движение при одинаковом наборе исходных данных — даже на этой примитивной задаче вы столкнетесь с теми проблемами, о которых мы только что рассуждали.
Однако на практике чаще встречается ситуация, когда некоторая формальная система позволяет адекватно описывать феномены различного происхождения — так обстоит дело со многими математическими формальными системами, полученными в результате развития естественнонаучных дисциплин (таковы дифференциальное, интегральное исчисление, теория множеств и иные). Выявление подобных закономерностей в свое время стимулировало развитие теории систем. А прием метафорического переноса формальных представлений на смежные (а порой — и на весьма отдаленные) предметные отрасли прочно укоренился в современной науке и практике синтеза моделей.
Зачастую, при синтезе имитационных моделей в качестве гипотез выдвигаются предположения о возможности использования для описания некоторой системы или процесса той или иной группы зависимостей, выражаемых теми или иными формальными средствами. Так, в современной науке сосуществуют теории электромагнитного и информационного полей, использующие одинаковый формальный аппарат. Характерно, что «примазавшаяся» к ранее разработанному формальному аппарату теория информационного поля постулирует справедливость утверждений теории электромагнитного поля для процессов распространения информации и, более того, подтверждает некоторые утверждения экспериментально. Часто подобные метафоры оказывают стимулирующее воздействие и на развитие первичных теорий, но бывает и так, что вместе с «обвалом» первичной теории рушится целый «куст» стройных формальных построений.
Но гипотеза — на то и гипотеза, чтобы выражать лишь потенциально верное знание, а предназначение имитационных моделей — исследование справедливости выдвинутых гипотез, создание предпосылок для перехода на качественно новый уровень знания о системе (уровень теории). Когда же из множества гипотез на основе некоторого набора критериев удается выбрать одну, наилучшим образом объясняющую наблюдаемые явления, за ней закрепляется статус «индикатора» или «скелета» теории. Иными словами, если некоторая гипотеза, построенная в рамках более обширной (и, возможно, ранее существовавшей) теории, подтвердилась, то в дальнейшем эта теория считается адекватно описывающей процессы, протекающие в системе и закономерности ее функционирования. В случае же, когда теории, соответствующей выдвинутой гипотезе ранее не существовало, на основании подтвержденной гипотезы формулируется новая теория, в рамках которой решается задача вскрытия и описания устойчивых закономерностей.
Если теория была сформулирована ранее, из нее заимствуются соответствующие методы формального описания системы. В противном случае методы формального описания заимствуются из других теорий или разрабатываются новые (что случается реже). При синтезе методов формального описания чрезвычайно продуктивен «прием метафоры», заключающийся в поиске сходства с ранее изученными феноменами и уподоблении им наблюдаемых. Данный прием входит в число методов активизации использования интуиции и опыта специалистов. При этом формулируется гипотеза о подобии наблюдаемых процессов тем процессам и явлениям (а также переносимости закономерностей и законов, свойственных им), которые были избраны на этапе выбора метафоры.
Ранее в этом разделе нами были перечислены методы формального представления систем, к числу которых были отнесены аналитические, вероятностные и статистические, теоретико-множественные и логические, лингвистические и семиотические, а также графические и иные методы. Такое разбиение на группы методов было осуществлено по сходству формального аппарата, используемого ими.
Формальные модели, построенные с применением этих методов, получают названия, сходные с названиями использованных методов, однако могут включать в себя и термины, характеризующие и иные свойства моделей, а именно:
- характеристика стабильности модели/системы (статические и динамические модели, модели параметрической, структурной и функциональной динамики т. д.);
- характеристика среды функционирования, степени устойчивости причинно-следственных отношений, степени неопределенности исходных данных (детерминированные, стохастические, логические модели, модели нечеткой логики);
- характеристика целенаправленности системы/процесса (целенаправленные, гомеостатические, нецеленаправленные);
- характеристика состава системы/участников процесса (социальные, организационно-технические, эргатические, экологические, технические и т. п.).
Помимо перечисленных, в наименование формальной модели могут быть включены и иные характеристики, отражающие специфику формального аппарата и системы, представленной с его помощью. В качестве примера наименования такой модели может быть использовано следующее: «логико-лингвистическая модель структурной динамики организационно-технической системы».