Пролог: Первоапрельские астронавты

Вид материалаДокументы
Подобный материал:
1   ...   4   5   6   7   8   9   10   11   ...   20

Франц фон Гефт родился 5 апреля 1882 года в Вене и с ранней юности занимался разработкой проектов дирижаблей и аппаратов для полетов в мировое пространство. Для приведения последних в движение он первоначально предполагал использовать «энергию мирового эфира», но впоследствии отказался от этой своей идеи как неосуществимой – изменились взгляды физиков на окружающий мир. В итоге фон Гефт обратился к конструктивной разработке «регистрирующих ракет» по идее профессора Германа Оберта.

На съезде естествоиспытателей в сентябре 1924 года в Инсбруке фон Гефт изложил свою программу, в которой он выдвинул в качестве первоочередной задачи космонавтики конструирование ракет, способных поднять полезный груз регистрирующих приборов весом в 500 – 800 кг на высоту от 100 до 200 км. По мнению Гефта, испытания таких ракет имели бы чрезвычайно важное значение для науки. Следующим этапом работы должно явиться создание регистрирующих ракет, которые могли бы, поднявшись до высоты в 1 000 км, в течение нескольких часов облететь Землю в качестве искусственного спутника, пролетая над обоими ее полюсами. При этом с помощью специально сконструированного аппарата можно было бы произвести аэросъемку, а на ее основе начертить карту земной поверхности масштабом 1:100000. Ракета такого же устройства, но больших размеров, впоследствии может быть использована и для фотографирования обратной стороны Луны. То же самое нужно сделать для Марса и Венеры. Таким образом, Франц фон Гефт был первым, кто заявил о необходимости подробного картографирования Солнечной системы на самом первом этапе ее освоения.

Осенью 1926 года фон Гефт организовал в Вене Научное общество для изучения больших высот, поставившее себе целью практическое осуществление намеченной им программы.

В статье «Завоевание Вселенной» («Dir Eroberung des Weltalls»), опубликованнной в 1928 году, австрийский инженер дал описание предполагаемых им опытов с ракетами разных типов под общим обозначением «RH» (от «Rakete-Haft» – «Ракетная сцепка») с порядковыми номерами в римской числовой системе.

Первый тип «RH I» – разновидность регистрирующей ракеты. Длина ее составляла 1,2 м, диаметр – 20 см, вес – 30 кг. Топливо – 10 кг спирта на 12 кг жидкого кислорода. Она должна была подниматься на высоту 10 км при помощи воздушного шара и нести полезный груз – «метеорографы» весом в 1 кг. На этой высоте двигатель ракеты автоматически запускался, сама ракета отделялась от шара и должна была взлететь до уровня в 100 км. Благополучное возвращение приборов на землю гарантировал специальный парашют.

Ракета «RH II» была подобна первой, но с пороховым двигателем.

Ракета «RH III» – двухступенчатая, весом в 3 т. В качестве полезного груза она несла от 5 до 10 кг пороха, который при падении на Луну должен был взорваться яркой вспышкой, которую фон Гефт предполагал наблюдать с Земли при помощи мощного телескопа. Кроме того, эта ракета смогла бы облететь вокруг Луны, сфотографировать ее невидимую сторону и вернуться с пленками на Землю.

Ракета «RH IV» подобна «RH III», но предназначалась для переброски срочной почты с континента на континент.

Согласно предложению фон Гефта, ракеты «RH III» и «RH IV» должны были сначала подниматься на высоту шести километров при помощи воздушных шаров или вспомогательных ракет, а затем уже начинать самостоятельный полет.


Космический корабль фон Гефта «RH V» предназначался для межпланетных перелетов и представлял собой «летающее крыло» с установленным на корме пакетом ракет. Стартовать он должен был с воды, поднимаясь до высоты 25 км по вертикали, а затем переходя на пологую траекторию. Начальный вес «RH V» – 30 т, конечный – 3 т, длина – 12 м, ширина – 8 м, высота корпуса – 1,5 м. Количество членов экипажа – от 2 до 4 человек. Ускорение при вертикальном взлете должно было составлять 30 м/с

2

, максимальная скорость полета – 9,2 км/с. Управление кораблем осуществлялось посредством «рулей высоты и поворотов», а также с помощью особой «поворотной дюзы».


Франц фон Гефт полагал, что в комбинации с отделяемыми вспомогательными ракетами «RH VI» (вес – 300 т), «RH VII» (вес – 600 т) и «RH VIII» (вес – 12000 т) его «пятерка» способна развить скорость 27,6 км/с и достигнуть Луны, Марса и Венеры.

Любопытно, что австрийский инженер предусмотрел возможность многократного использования разгонных ракет. По его проекту, в головной части каждой из них должна быть устроена кабина с пилотом, который осуществит плавный спуск и приводнение отработавшей свою часть траектории ракеты.

Когда изучаешь доклад Франца фон Гефта, то невольно восхищаешься даром технического предвидения этого ученого, который еще в 1928 году сумел предугадать черты будущих космических программ. На подобном фоне рассуждения того же Макса Валье об эволюции ракетных аэропланов представляются в лучшем случае ошибочными. Однако не все так просто, как может показаться на первый взгляд. На самом деле австрийский инженер и немецкий пилот-литератор говорили о двух параллельных путях развития космических технологий, которые в то время представлялись публике совершенно равнозначными. И то, что возобладало одно направление, совершенно не означает, что не могло возобладать другое. На ход истории порой воздействуют совершенно случайные факторы – например, внезапная смерть одного или нескольких человек. Ныне, с высоты минувших десятилетий, не приходится сомневаться, что на историю развития немецкого ракетостроения, на выбор путей развития космонавтики заметным образом повлияла безвременная и весьма драматичная гибель Макса Валье. А к трагическому исходу его привели опыты с ракетными автомобилями…


2.6. Рекорды ракетных автомобилей


Благодаря многочисленным публикациям в прессе и выходу в свет все новых и новых книг, популяризирующих космонавтику, потенциальные спонсоры начали проявлять интерес к необычной технике.

Уже в августе 1924 года Герман Оберт получил из Вюрцбурга письмо, в котором состоятельный банкир Карл Бартель выражал желание профинансировать начало экспериментальных исследований в области ракетостроения и приглашал к себе для переговоров. Оберт, конечно же, приехал, и они обсудили предстоящие работы. Банкир хотел, однако, быть уверенным, что жертвует деньги не на пустую затею, а потому послал работу Оберта в Берлин, в Высшую техническую школу профессору Франке. Профессор долго не отвечал банкиру, но в декабре изложил в письме к Бартелю свое мнение. Он написал, что работа Оберта математически безупречна, но автор основывает свои выкладки на ошибочных представлениях. Банкир отказался от своего намерения и потерял возможность войти в историю науки как меценат, поддержавший великую идею. Многочисленные вежливые письма Оберта профессору Франке с просьбой перечислить эти самые «ошибочные представления» остались без ответа.

После крушения надежд на получение денег от банкира Бартеля, Макс Валье, активно сотрудничавший с Обертом, пытался найти другой источник для финансирования работ по ракетной тематике. Помимо подготовки очередных изданий своей книги, он опубликовал множество статей в иллюстрированных журналах и ежедневных газетах. Эти статьи имели успех, в особенности – у молодежи; а двум тогдашним гимназистам – Эйгену Зенгеру и Вернеру фон Брауну – определили выбор жизненного пути.

Однажды Валье довелось повидать Фрица фон Опеля – одного из совладельцев компании «Опель» («Adam Opel AG»). Эта компания, специализировавшаяся на выпуске дешевых автомобилей, разорилась в годы послевоенной разрухи и гиперинфляции, однако во второй половине 1920-х годов в развитие компании вложил серьезные деньги американский концерн «Дженерал Моторз», и семейство Опелей снова было на подъеме.

Прислушиваясь к тому, что рассказывал ему Валье, Фриц фон Опель, внук основателя автокомпании, пришел к блестящей идее. Он увидел возможность создания эффективной рекламы при минимальных затратах. Вместе с Валье они решают построить ракетный автомобиль. Но сколько времени понадобится на разработку ракетного двигателя? Популяризатор космонавтики убеждает фон Опеля в том, что нужно действовать быстро; такие эксперименты будут иметь ценность с научной точки зрения, даже если их провести с использованием больших пороховых ракетах, а последние можно приобрести всегда.

Я уже писал выше, что в Везермюнде, близ Бремена, имелся чуть ли не единственный завод, выпускавший пороховые ракеты для нужд спасательных служб и принадлежащий инженеру Зандеру. Ракеты Зандера высоко ценились у моряков из-за высоких характеристик, которые были получены благодаря особому процессу производства, разработанному самим Зандером.

Фридрих Зандер родился в 1886 году в Глатце. По получении среднего образования работал несколько лет на предприятиях по производству паровых и морозильных машин, а затем – двигателей внутреннего сгорания в Ганновере. С 1911 года состоял научным консультантом фирмы «Кордес» в Везермюнде, а после войны стал ее владельцем.

Еще до знакомства с Максом Валье и Фрицем фон Опелем Зандер проводил многочисленные эксперименты, стараясь увеличить дальность и высоту полета своих ракет. Наилучшие результаты были достигнуты им с ракетами калибром в 22 см, с помощью которых мог быть совершен подъем грузов весом от 400 до 500 кг на высоту в 4 000 – 5 000 м, откуда, будучи отделенными от выгоревшей ракеты, они могли плавно спускаться на парашютах. Зандеру не представило уже большого труда осуществить подъем в стратосферу этих ракет, снабдив их самопишущими приборами – то есть фактически начать осуществлять исследовательскую программу Оберта-Валье-Гефта. Однако быстро выяснилось, что имевшиеся в то время метеорологические приборы обладают слишком большой инерцией для того, чтобы их показания могли достаточно быстро следовать за изменениями метеорологической обстановки при подъеме или при спуске. Валье в своей книге отмечает, что используя силу тяги своих крупнокалиберных ракет, Зандер несомненно смог бы заставить подняться ракетный корабль на высоту в нескольких тысяч метров. С этой высоты пассажиры такого корабля смогли бы спуститься на парашютах в воздухонепроницаемой гондоле или в скафандрах. Однако представляется сомнительным, чтобы пассажиры такого корабля смогли бы выдержать перегрузку, имеющую место в момент старта…

Обсудив особенности предстоящих испытаний, Валье и Зандер решили применить в ракетном автомобиле фон Опеля «смешанную батарею ракет», состоящую из ракет с трубчатым и ракет со сплошным пороховым зарядом. 50-миллиметровые ракеты с трубчатым пороховым зарядом создавали тягу около 80 кг в течение почти 3 секунд, а специально изготовленные большие сплошные ракетные пороховые заряды (брандеры) длиной в 90 миллиметров обеспечивали получение тяги в 18 кг в течение 30 секунд. Трубчатые пороховые заряды предназначались для первоначального разгона автомашины до определенной скорости, а ракеты-брандеры должны были поддерживать эту скорость на дистанции.

Прежде чем выехать на испытательный трек Опеля в Рюссельсгейме, Макс Валье хотел провести испытание «ракетного автомобиля» в Везермюнде, но Зандер отказался дать свою автомашину марки «Опель» для проведения эксперимента, а у Валье собственного авто не было. Споры ни к чему не привели, и они решили ехать в Рюссельсгейм без предварительного испытания. Ракеты были доставлены туда автомашиной, так как железная дорога отказалась их перевозить.

После прибытия ракетной команды в Рюссельсгейм выяснилось, что специальный автомобиль, предназначенный для этого дела, еще не готов. Обыкновенных же автомобилей «Опель» мощностью с двигателем в 4 лошадиные силы имелось, разумеется, достаточное количество, поэтому один из них был снабжен простой деревянной насадкой, предназначенной для укрепления ракет и выведен на автомобильное поле. К трем часам дня 15 марта 1928 года диковинная машина была готова к старту.

В последнюю минуту между участниками опыта возник спор по поводу того, кому ехать первым. В конце концов эта почетная задача была возложена на бывшего автомобильного гонщика Курта Фолькхарта, работавшего испытателем в компании «Опель». В качестве меры предосторожности для первой поездки была использована только одна трубчатая ракета и одна ракета-брандер.

Курт Фолькхарт занял свое место у руля. Поскольку никакого специального зажигательного приспособления еще не имелось, то зажигание ракет было произведено с помощью общеупотребительного в пиротехнике бикфордова шнура.

Расположившиеся в укрытии представители «Опеля» застыли, в тревоге ожидая, когда же догорит бикфордов шнур. Фолькхарт сидел, нагнувшись, за рулем и готовился ощутить себя человеком-ракетой – вроде тех, которыми выстреливают из пушки в цирке. Только Зандер и Валье были поглощены совершенно иными заботами: они сомневались, смогут ли вообще эти две ракеты с общей силой тяги в 100 кг сдвинуть с места автомобиль, весящий вместе с водителем около 600 кг…

Наконец огонь добрался до ракет, с громким шипением из них вырвались мощные клубы дыма, сквозь которые едва удавалось разглядеть языки пламени. Автомобиль, мягко тронувшись с места, пришел в движение. В тот момент, когда он развил скорость беглого шага (5 – 6 км/ч), трубчатая ракета догорела. Ракеты со сплошной набивкой хватило только на то, чтобы еще в течение полуминуты толкать автомобиль со скоростью парового катка. Весь пробег продлился 35 секунд, в течение которых автомобиль проехал примерно 150 метров. Несмотря на столь невзрачный результат, это была первая в истории поездка с использованием ракет.

Фриц фон Опель отнесся к первому опыту юмористически, начал подтрунивать над ракетчиками. Тогда Зандер и Валье решили пожертвовать одной из 50-миллиметровых ракет, запустив ее в воздух обычным способом. Когда она с быстротой артиллерийского снаряда за две секунды достигла высоты примерно в 400 метров, доверие автомобилистов к ракете как двигателю вновь возросло.

Примерно через час после первого «пробега» автомобиль подготовили ко второму опыту. На этот раз были использованы одна трубчатая ракета силой тяги в 80 кг и 90-миллиметровая ракета такой же конструкции силой тяги в 220 кг.

Фолькхарт снова сел за руль, и шнур был подожжен. Для того чтобы сберечь часть энергии ракет, автомобиль предварительно был приведен в движение обычным мотором со скоростью в 30 км/ч. Через 18 секунд после зажигания шнура Фолькхарт выключил мотор и пустил автомобиль свободным ходом. И точно по расчету, спустя 20 секунд после зажигания шнура огонь добрался до ракет. На этот раз автомобиль сделал быстрый рывок вперед со значительным ускорением – подобно стреле, выпущенной из лука. За полторы секунды скорость его движения возросла с 30 до 75 км/ч.

Уже во время этой пробной поездки Фолькхарт ощутил перегрузку, обусловленную ускорением, и заметил, что сила тяги ракетного автомобиля оказалась по меньшей мере равной силе тяги наиболее мощных гоночных машин.

«Еще 10 секунд такого разгона, и я побил бы мировой рекорд скорости», – заявил испытатель, слезая с автомобиля.

Последующий расчет подтвердил правильность этого предположения.

11 апреля 1928 года автомобиль, специально созданный для ракетных испытаний и получивший название «Opel-Rak 1» («Опель-Рак 1»), был готов к старту. С виду очень похожий на гоночную машину того времени, он был снабжен насадкой, предназначенной для укрепления 12 штук 90-миллиметровых ракет-брандеров. Было подготовлено зажигательное приспособление с электрическими контактами на изолирующем диске, по ним скользила замыкающая стрелка, движимая часовым механизмом – ракеты могли зажигаться через равные промежутки времени в той последовательности, в какой они были соединены с контактами. А сам часовой механизм запускался водителем путем нажатия на отдельную педаль. И снова перед самым стартом возникли серьезные разногласия: Валье хотел ехать сам, но это право вновь досталось Фолькхарту.

В этот день, как и в первый раз, опыты производились втайне от публики и журналистов на автомобильном поле компании «Опель» близ Рюссельсгейма, куда ни публика, ни представители прессы допущены не были. Кроме нескольких работников «Опеля» на пробеги в качестве «спортивных судей» были приглашены только писатель-фантаст Отто Гейль и инженер Хайнц Бек.

Заряд, установленный на «Opel-Rak 1», состоял из шести ракет калибром в 90 мм, из них 4 являлись трубчатыми ракетами с силой тяги примерно по 220 кг и две – ракетами-брандерами со сплошной набивкой и силой тяги в 18 кг каждая. Последовательность зажигания ракет предусматривалась следующая: сначала должны были одна за другой сгореть обе пары трубчатых ракет, а после них – пара брандеров. Интервал между последовательными зажиганиями был установлен в три секунды.

При проведении этого испытания после сгорания двух первых пар ракет автомобиль в течение 6 секунд приобрел скорость в 70 км/ч, которую он и сохранил почти неизменной вплоть до конца горения брандеров. Движимый ракетами «Opel-Rak 1» проделал путь длиною около 600 м. Впоследствии обнаружилось, что одна из первых четырех ракет не воспламенилась и осталась неиспользованной.

На следующий старт был взят заряд из восьми ракет, зажигаемых аналогичным способом. Две, а затем три трубчатые ракеты должны были сообщить автомобилю сильный разгон, а три ракеты-брандера – поддержать достигнутую скорость. Этот пробег также удался, а автомобиль достиг скорости в 80 км/ч. Однако непосредственно перед зажиганием третьей группы ракет произошел взрыв.

К счастью, придуманное Максом Валье предохранительное устройство сработало, как часы, и ни Фолькхарт, ни автомобиль не пострадали. «Opel-Rak 1» продолжал движение под действием ракет со сплошной набивкой и проехал больше половины овального автомобильного поля. Одна из трубчатых ракет опять не зажглась. В итоге длина пройденного пути составила 1 км. По итогам пробега было решено на следующий день предпринять третью серию опытов, пригласив на них представителей прессы.

Уже с утра 12 апреля в Рюссельсгейме на опытном участке – в мастерской и на автомобильном поле компании «Опель» – закипела работа по подготовке первого публичного старта первого в мире ракетного автомобиля. На самом деле по общему счету всех уже произведенных опытов готовился уже пятый пробег, который, как надеялся Макс Валье, должен был показать общественности, что проблема ракетного движения успешно разрешена.

На этот раз был использован полный заряд из 12 трубчатых ракет. Зажигая их попарно, водитель собирался разогнать автомобиль до 120 км/ч и заставить его описать полный круг по автомобильному полю, то есть проехать не менее 1500 м. В действительности все пошло несколько иначе, потому что, как было установлено впоследствии, некоторые зажигательные провода раньше времени расплавились, и из «батареи» сгорело только 7 ракет. Несмотря на это, старт произвел весьма внушительное впечатление. Макс Валье позднее писал:


«В ту же секунду, в которую был подан сигнал старта, автомобиль сорвался с места с дух захватывающим ускорением. Самое большее через 8 секунд, после второго зажигания, он пронесся мимо трибун со скоростью, превышавшей 100 км/ч, направляясь к расположенной далее кривой. Здесь вырвавшиеся из автомобиля языки пламени исчезли и после этого появились вновь только тогда, когда впереди оказался второй прямой прогон автомобильного поля. В момент прохождения кривой Фолькхарт „выключил газ“ (если только в данном случае можно так выразиться) и произвел зажигание только тогда, когда кривая уже осталась позади. Четвертое зажигание было произведено тогда, когда автомобиль проехал уже 3/4 круга автомобильного поля. Это зажигание оказалось слабым, вследствие того что загорелась только седьмая ракета, в то время как восьмая работать отказалась. После этого Фолькхарт пустил автомобиль свободным ходом и доехал до места старта. Таким образом, включая часть пути, проделанную автомобилем по инерции, удалось проехать полный круг…»


Потрясенные зрители оставались на своих местах до тех пор, пока Валье с Зандером, торжествуя, не запустили в воздух одну из оставшихся 9-сантиметровых ракет. Ее полет был встречен бурными аплодисментами.

Ученые, специализирующиеся на ракетостроении, встретили восторженные отзывы прессы скептически. История сохранила, например, мнение Константина Циолковского:


«Теперь производят опыты с реактивными автомобилями (опыты фирмы Опеля близ Франкфурта-на-Майне), – записал он. – Они научат нас выгодному взрыванию и управлению одним рулем. Только и всего. К автомобильному же делу реактивные приборы неприменимы, потому что дадут неэкономичные результаты».


И все же расчет Валье оказался верен: соображения специалистов (особенно – скептические) в таких ситуациях просто не принимались в расчет. Идея езды на ракетном автомобиле интриговала, и этого было более чем достаточно. Портреты Фрица фон Опеля и Курта Фолькхарта, фотографии ракетных автомобилей не сходили с газетных страниц. Радио транслировало речи Oпеля, респектабельные журналы печатали подробные отчеты сотрудников автокомпании и самого Валье.

«Газеты пестрели захватывающими дух сообщениями. Место хроники, убийств и скандалов заняли сообщения о ракетных испытаниях», – так описывает этот период в книге «Сильнее силы тяжести» Хорст Кернер.

Итак, рекламная затея в конце концов удалась, и пока рекламное бюро «Опеля» помещало в лучших журналах полные выкладки об этом событии, технический отдел спроектировал еще один ракетный автомобиль. Это была длинная обтекаемая автомашина с более низкой посадкой и с обрубленными крыльями, установленными так, чтобы не поднимать, а прижимать машину к дороге (антикрыло). Ей присвоили название «Opel-Rak 2».

Фриц фон Опель решил прекратить опыты с ракетными автомобилями на малопригодном для этой цели поле в Рюссельсгейме и организовал следующий старт на большом автомобильном поле «Авус» в Берлине. Более того, он сам захотел сесть за руль.

21 мая этот автомобильный магнат предпринял пробную поездку на «Opel-Rak 2». Во время этой поездки случился небольшой взрыв из-за дефектов в зажигании.

И все же 23 мая 1928 года фон Опель, не проявляя ни малейших признаков волнения, занял место у руля ракетного автомобиля на глазах у двух тысяч приглашенных зрителей, представителей печати, фотографов и кинооператоров, чтобы доказать миру, что прогресс ракетного дела не стоит на месте.