Учебное пособие. Спб.: Издательство «Речь», 2003. 480 с. Ббк88
Вид материала | Учебное пособие |
Содержание4.6.2. Первичная обработка Частота (абсолютная частота) Пример для непрерывных данных |
- Учебное пособие Санкт-Петербург Издательство спбгпу 2003, 5418.74kb.
- Учебное пособие Москва Московский психолого-социальный институт Издательство "Флинта", 4861.34kb.
- Учебное пособие / А. Деркач, В. Зазыкин. Спб.: Питер, 2003. 256 с.: ил. Серия «Учебное, 3778.64kb.
- Учебное пособие издательство санкт-петербургского государственного университета экономики, 3398.77kb.
- Психология и психотерапия потерь. Пособие по паллиативной медицине для врачей, психологов, 2382.33kb.
- Учебное пособие для самостоятельной работы студентов издательство, 2102.65kb.
- Учебное пособие Сыктывкар 2002 Корпоративное управление Учебное пособие, 1940.74kb.
- Учебное пособие Издательство тпу томск 2003, 1032.83kb.
- Учебное пособие, 2003 г. Учебное пособие разработано ведущим специалистом учебно-методического, 794.09kb.
- Учебное пособие, 2003 г. Учебное пособие разработано ведущим специалистом учебно-методического, 783.58kb.
4.6.2. Первичная обработка
На первой стадии «сырые» сведения группируются по тем или иным критериям, заносятся в сводные таблицы, а для наглядного представления данных строятся различные диаграммы и графики. Все эти манипуляции позволяют, во-первых, обнаружить и ликвидировать ошибки, совершенные при фиксации данных, и, во-вторых, выявить и изъять из общего массива нелепые данные, полученные в результате нарушения процедуры обследования, несоблюдения испытуемыми инструкции и т. п. Кроме того, первично обработанные данные, представая в удобной для обозрения форме, дают исследователю в первом приближении представление о характере всей совокупности данных в целом: об их однородности–неоднородности, компактности-разбросанности, четкости–размытости и т. д. Эта информация хорошо читается на наглядных формах представления данных и связана с понятием «распределение данных».
Под распределением данных понимается их разнесенность по категориям выраженности исследуемого качества (признака). Разнесенность по категориям показывает, как часто (или редко) в определенном массиве данных встречаются те или иные показатели изучаемого признака. Поэтому такой вид представления данных называют «распределением частот». Выраженность признака, как видели выше, может быть представлена в оценках: «есть – нет» или «равно – неравно» (номинативные данные), «больше – меньше» (порядковые данные), «настолько-то больше или меньше» (интервальные данные), «во столько-то раз больше или меньше» (пропорциональные данные). Первая категория оценок предполагает явную дискретность выраженности изучаемого признака, остальные – непрерывность (хотя бы теоретически). Проиллюстрируем это примерами.
Пример для дискретных данных
В трехтысячном трудовом коллективе были выбраны сто человек, которые давали ответ на вопрос: «какой цвет вы предпочитаете?». Предлагалось 6 вариантов: белый (Б), черный (Ч), красный (К), синий (С), зеленый (3), желтый (Ж). В данном случае каждый цвет – это самостоятельная категория выраженности признака «окраска». Допустим, цель – выбор дизайнером окраски рабочих помещений, где трудятся эти люди. Итоги опроса, зафиксированные в протоколе, подсчитали и занесли в таблицу 1 (табулировали).
Таблица 1
Итоги опроса
Цвет | Количество выборов | ||
Абсолютная частота | Относительная частота | % | |
Б | 8 | 0,08 | 8 |
Ч | 6 | 0,06 | 6 |
К | 21 | 0,21 | 21 |
С | 20 | 0,20 | 20 |
З | 34 | 0,34 | 34 |
Ж | 11 | 0,11 | 11 |
Сумма | 100 | 1,00 | 100 |
Частота (абсолютная частота) – это число ответов данной категории в выборке, частость (относительная частота) – это отношение частоты ко всей выборке. Под выборкой понимается все множество полученных в исследовании значений изучаемого признака (свойства, качества, состояния) объекта. В нашем примере выборка равна 100. Понятие выборки связано с понятием генеральной совокупности (или популяции), которая представляет собой все возможное множество значений изучаемого признака. В нашем примере она равна 3000. Поскольку даже ограниченные популяции обычно весьма велики, то опыты проводятся только на выборках. Поэтому встает вопрос о репрезентативности выборки, т. е. о том, можно ли результаты, полученные на выборке, переносить на всю совокупность. Для этого привлекают статистические методы доказательства репрезентативности. Таким образом, выборка есть часть генеральной совокупности. Краткое описание этих множеств производится с помощью так называемых описательных мер (мер центральной тенденции, разброса и связи), вычисление которых производится при вторичной обработке данных. Значения мер, вычисленные для генеральных совокупностей, называются параметрами, для выборок – статистиками. Параметр описывает генеральную совокупность также, как статистика – выборку. Принято обозначать статистики латинскими буквами, а параметры – греческими. Правда, в психологических исследованиях этих правил не всегда строго придерживаются.
На основании табличных данных можно построить диаграмму, где распределение представлено нагляднее:
Пример для непрерывных данных
Данные непрерывного характера можно представить в еще более наглядной форме: в виде гистограмм, полигонов и кривых.
В опытах В. К. Гайды, описанных в учебном пособии для студентов-психологов [76, с. 23-25], участвовало 96 испытуемых. Определялся цвет последовательного образа восприятия насыщенного красного цвета. С этой целью каждый испытуемый в течение одной минуты рассматривал окрашенный в красный цвет образец, а затем переносил взгляд на белый экран, где видел круг в дополнительных цветах. Рядом с ним находился цветовой круг с разноокрашенными секторами, на котором испытуемый должен был выбрать тот цвет, который соответствовал цвету возникшего у него последовательного образа. При этом испытуемый не называл цвет, а лишь его номер в цветовом круге. Цветовой круг нормирован таким образом, что соседние цвета отличаются в нем друг от друга на одинаково замечаемую величину. Следовательно, цветовой круг можно рассматривать как интервальную шкалу. Наряду с этим цветовой круг характеризуется и еще одним свойством. В частности, можно себе представить, что между двумя соседними цветами, например между зеленовато-голубым и голубовато-зеленым, имеется еще множество не замечаемых человеческим глазом цветовых переходов. В этом смысле цветовой круг представляет собой пример непрерывной переменной. Фактически же испытуемые всегда выделяют конечное число цветовых оттенков и поэтому свой выбор останавливают на конкретном номере (или названии) цвета. В рассматриваемом эксперименте испытуемые определяли свой последовательный образ в диапазоне от № 16 – зеленовато-голубой цвет до № 23 – желтовато-зеленый. Полученные данные можно табулировать, что и сделано в таблице 2.
Таблица 2
Последовательный образ | Частота выбора цвета образа |
16 | 2 |
17 | 7 |
18 | 15 |
19 | 26 |
20 | 22 |
21 | 15 |
22 | 8 |
23 | 1 |
Σ | 96 |
Как видно, в построении таблиц 1 и 2 нет принципиального различия. Но разница в характере первичных данных, отображенных в обеих таблицах, все же есть, и она обнаруживается при их графическом изображении. В самом деле, рис. 2 представляет собой уже не столбиковую, а ступенчатую диаграмму, называемую гистограммой. Следует обратить внимание на то, что все участки (столбики) ступенчатой диаграммы расположены вплотную друг к другу (числовые переменные на оси абсцисс гистограммы пишут против центральной оси каждого участка).
От гистограммы легко перейти к построению частотного полигона распределения, а от последнего – к кривой распределения. Частотный полигон строят, соединяя прямыми отрезками верхние точки центральных осей всех участков ступенчатой диаграммы (рис. 3). Если же вершины участков соединить с помощью плавных кривых линий, то получится кривая распределения первичных результатов (рис. 4).
Переход от гистограммы к кривой распределения позволяет путем интерполяции находить те величины исследуемой переменной, которые в опыте не были получены.