Иерархические системы управления (ИСУ) - это системы произвольной природы (экономические, технические, социальные, биологические) и назначения, имеющие многоуровневую структуру в организационном, функциональном или каким-либо ином плане.
Всем иерархическим системам присущи следующие особенности:
вертикальная декомпозиция, или многоуровневая иерархия;
приоритет действий верхнего уровня, или подчиненность (отношение субординации) действий нижних уровней решениям, принимаемых на верхнем уровне;
зависимость решений, принимаемых на верхних уровнях иерархии, от результатов, полученных на нижних уровнях, т.е. наличие обратных связей в ИСУ
Широкое распространение ИСУ и их универсальный характер обусловлены рядом преимуществ, которыми они обладают по сравнению с другими системами управления:
свобода локальных действий в пределах, обусловленных вмешательством верхнего уровня;
возможность согласования локальных и глобального критериев оптимальности уровней ИСУ в соответствии с целью, поставленной перед всей системой;
преимущества обобщения, сжатия, агрегирования информации, поступающей в ИСУ "снизу вверх", и - конкретизации, детализации информации, передаваемой "сверху вниз";
высокая надежность системы управления, ее гибкость и адаптивность к изменяющейся ситуации;
универсальный характер и, зачастую, - экономичность.
Основные разделы теории ИСУ: структурный анализ и синтез ИСУ; проблема координации ИСУ; оптимизация функционирования
ИСУ.
Задачи структурного анализа и синтеза ИСУ весьма разнообразны, представление сложной системы в виде ИСУ зависит от принципа детализации: он определяет структуризацию системы по уровням. Различают три основные концепции построения иерархической структуры "по вертикали":
декомпозиция системы по аспектам деятельности называется стратификацией сложной системы, а сами уровни называются стратами. Так, например, регион как сложная система, может быть представлен следующими уровнями, или стратами: политической, экономической, социальной, природно-климатической, экологической, др.;
расчленение системы по организационному признаку позволяет строить многоэшелонные структуры управления, отражая необходимую субординацию между подсистемами, что является плодотворным при построении системы управления различными производства ми, фирмами и др.;
подразделение сложной проблемы на частные задачи позволяет представить процесс решения в видемногослойной иерархии.
В ходе структуризации каждый из уровней можно подразделять еще на ряд подсистем уже по другому признаку. В качестве такового можно использовать функциональный подход или избранный принцип управления: с отрицательной обратной связью, с адаптацией, с обучением и др.
Основными задачами, возникающими при исследовании ИСУ, являются задачи анализа и синтеза иерархических систем. Рассмотрим некоторые предпосылки формального подхода к постановке задания исследования.
ИСУ любой системы сложности может быть представлена как совокупность взаимосвязанных модулей, в качестве которых выступают двухуровневые ИСУ - простейшие подсистемы, имеющие все характерные особенности ИСУ.
Двухуровневая ИСУ образована (п+2) основными подсистемами:
п нижестоящим управляющим подсистемам Сi (i=1,n), которые вырабатывают сигналы обратной связи i(i=1,n),поступающие на вход координатора, а также управляющие воздействия mi, предназначенные для управления
процессом Р, связь которого с внешней средой осуществляется посредством входа Х и выхода У, а обмен информацией о результатах деятельности происходит по каналам обратной связи zi.
Взаимодействия между подсистемами ИСУ носят динамический характер, изменяются во времени и образуют замкнутый контур, при чем по определению верхний уровень обладает приоритетом.
При этом вышестоящий элемент С0 до принятия управленческих решений подсистемами Ci(i=1,2,...,n) реализуетдирективную функцию: на основе прогнозирования состояния окружающей среды и будущего поведения системы управления (сокращение неопределенности ситуации) устанавливает функцию качества управления, определяет форму взаимосвязи элементов Сi(i=1,2,...,n), или способ координации (выбор алгоритмов и правил) и выбирает координационные переменные уi(i=1,2, ...,п)Г, а после выработки и реализации управляющих воздействий mi(i=1,2,...,n) и получения информации о результатах по каналам i(1,2,...,п) корректирует, регулирует деятельность подсистем управления, реализуя побудительную функцию, чтобы достичь цели системы наилучшим образом.
Такие представления о правилах функционирования системы, используя терминологию теории множеств, в общем виде можно записать: