Моделирование водных экосистем. Комплексный подход в. В. Меншуткин, О. Н. Воробьева, Т. И. Казанцева, В. Ф. Левченко Введение

Вид материалаДокументы

Содержание


1.2. О необходимости создания автоматизированной системы принятия решений
2. Моделирование экологических процессов в водной среде
2.2. Имитация гидрохимических и гидробиологических процессов в ячейке экосистемы
Prod = prod(rad, trans, phos, pa, tem, h)
Mort = mort(phyt, teм, tox, mortox, mortcoef)
Dest = dest(detr, tem, destrcoef)
Ecosys = есоsys(h, phyt, phos, detr, tox, rad, trans, tem, destrcoef, mortox, mortcoef, sedcoef)
2.3. Модель функционирования предприятия, загрязняющего водную среду
Рис. 1. Объянение в тексте.
S2 = q*(pt*po*spo(po,cleanp) + tt *to*sto(to,cleant)
Zq= 10; pt=0.2; tt=0.01; cleanp=10; cleant=100.
3. Моделирование экосистемы Невской губы
3.2. Модель водопользования для экосистемы “Невская губа”
3.2.2. Общая компоновка модели
Рис. 2. Объянение в тексте.
Рис. 3. Объянение в тексте.
Рис. 4. Объянение в тексте.
Рис. 5. Объянение в тексте.
4. Концептуальная модель экосистемы Невской губы
4.1. Блок материальных процессов
...
Полное содержание
Подобный материал:
  1   2   3   4



Глава 9. МОДЕЛИРОВАНИЕ ВОДНЫХ ЭКОСИСТЕМ. КОМПЛЕКСНЫЙ ПОДХОД

В.В.Меншуткин, О.Н.Воробьева, Т.И.Казанцева, В.Ф.Левченко


Введение


Одной из актуальнейших задач в области оценки экологического состояния нашего региона является разработка единого комплексного подхода к проблеме качества среды и, в частности, воды, а также критериев оценки этого качества. Необходимость комплексной постановки проблемы обусловлена тем, что в различных сферах человеческой деятельности эти проблемы обсуждаются в разных аспектах, что приводит порой к взаимоисключающим выводам и решениям. Примером тому является постройка дамбы для защиты г. Санкт-Петербурга от наводнений. Занимаясь проблемой оценки качества воды уже в течение нескольких лет (нами были созданы имитационные модели и банки данных по планктону и бентосу экосистем Финского залива и Ладожского озера), мы непосредственно подошли к созданию компьютерной системы, помогающей принимать решения и учитывающей как биологические, так и антропогенные процессы, обусловленные жизнедеятельностью Санкт- Петербурга - самого крупного промышленного города на Балтике. Если задача создания компьютерной системы принятия решений находится пока лишь на стадии разработки и ею занимаются несколько коллективов из различных организаций, то на пути решения менее общих задач, в частности, связанных с экологией водных систем, достигнут больший прогресс как в методологической сфере, так и в сфере сбора и обработки первичной информации. Последнему и посвящена главным образом эта глава.

Ниже рассмотрены проблема комплесного подхода к оценке экологического состояния Санкт-Петербургского региона и вопросы моделирования водных экосистем, при этом в качестве примеров описаны частные модели. Описанные в главе 6 банки данных служили для нас основой при моделировании и оценивании экологического состояния водоемов. Разумеется, ряд методов, обсуждаемых ниже, может быть адаптирован и к другим регионам. Большое внимание уделено описанию фактического экологического состояния региона, а также прогнозированию развития ситуации в будущем.


1. Комплексный подход к проблеме качества среды Санкт-Петербургского региона


1. 1. Сущность подхода


Решение такой сложной многообразной проблемы, как управление качеством среды и, в частности, состоянием акватории в городе Санкт-Петербурге и регионе, требует комплексного подхода и применения совершенных компьютерных методов обработки информации. Комплексность подхода заключается в том, что рассмотрению подлежит не только водная среда в пределах города Санкт-Петербурга (река Нева, ее многочисленные притоки и каналы), но и источники пресной воды для системы “река Нева - Ладожское озеро” со всем ее водосбором. С другой стороны, нельзя исключить из рассмотрения Невскую губу, которая в результате постройки дамбы, предназначенной для защиты Санкт-Петербурга от наводнений, но в настоящее время так и не выполняющей этой функции, стала практически обособленным, хотя и проточным водоемом. Состояние Невской губы традиционно воспринимается петербуржцами как характеристика благополучия природной среды города.

Наконец, нельзя исключить из рассмотрения восточную часть Финского залива: это "окно в Европу" или, если выражаться конкретнее, - "окно в Балтийское море". При этом не следует забывать, что Правительство России 9 апреля 1992 года подписало международную Конвенцию об охране морской среды Балтийского моря, которую необходимо выполнять.

Сказанное выше раскрывает использование термина “комплексность” только в пространственном аспекте. Но не менее важен и другой аспект, связанный со сложностью процессов, приводящих к изменению качества воды в акватории города Санкт-Петербурга. Дело не только в том, что на качество воды влияет все множество гидродинамических, гидрохимических и гидробиологических процессов, происходящих в водоемах и водотоках, но и в том, что процессы сброса в водоемы и водотоки разнообразных загрязняющих веществ (от, казалось бы, сравнительно безобидных соединений фосфора до откровенно токсичных соединений ртути, мышьяка и органических веществ) самым существенным образом зависят от технологии промышленного производства и технологии очистки сточных вод, если таковая вообще имеет место.

Технология и экономика - это уже совершенно другая область человеческих знаний, существенно отличающаяся по своей методологии от экологических и биологических дисциплин, что очень затрудняет взаимодействие всех упомянутых подходов для решения единой проблемы качества воды в городе Санкт-Петербурге. Последнее, очевидно, связано с тем, что очень часто экономически выгодные решения оказываются экологически неприемлемыми.

Комплексность проблемы не ограничивается сказанным. Регулирование сброса сточных вод в водоемы и всякое другое вмешательство человека в функционирование водных экологических систем связано не только с технологическими и экономическими аспектами, но и с социальными и правовыми аспектами жизнедеятельности такого сложнейшего образования как город Санкт-Петербург. Дело в том, что регулировать сбросы вод можно на основе действующего законодательства, подзаконных актов и нормативов, принятых центральными и местными органами власти. При этом следует помнить о том, что всевозможные нормы ПДК (предельно допустимых концентраций) должны иметь медико-биологическое и гигиеническое обоснование, что вовлекает в широкий круг дисциплин также медицину и физиологию человека и животных.

Все сказанное должно служить доказательством того, что мы имеем дело с действительно комплексной проблемой, при решении которой должны использоваться знания из области гидрологии, гидродинамики, гидрохимии, гидробиологии, санитарии и гигиены, медицины, социологии и права, токсикологии, технологии очистки сточных вод, технологии различных отраслей промышленности, развитых в Санкт-Петербурге (в первую очередь, химической, металлургической, пищевой, текстильной, машиностроительной).

Наконец, к трудностям, возникающим на пути решения упомянутой комплексной проблемы качества среды Санкт-Петербургского региона, относятся также сбор первичных данных и их обработка.


1.2. О необходимости создания автоматизированной системы принятия решений


Если учесть, насколько неожиданными иногда бывают реакции экосистем на те или иные антропогенные воздействия, что обусловлено сложностью и многофакторностью явлений в экосистемах, то становится очевидным, что проблема качества среды региона требует весьма тщательной и комплексной научной проработки с участием специалистов разного профиля. Эмпирические методы руководства (например, метод проб и ошибок) или принятие волюнтаристских решений в данной ситуации явно не годятся в силу очень большой сложности проблемы и огромной возможной цены последствий в случае ошибочных решений. Прогнозирование состояния среды затрудняется еще и тем, что отсутствует единый подход к обработке и сопоставлению непосредственно экологического материала. Например, не существует даже единой концепции оценки устойчивости экосистем и качества среды.

Исключительно большой объем информации, который необходимо обработать при решении указанной чрезвычайно сложной комплексной проблемы, стоящей перед правительством города Санкт-Петербурга, приводит к пониманию того, что ее решение невозможно без использования методов компьютерного имитационного и математического моделирования, а также, теорий оптимального управления и принятия решения в условиях неопределенности. Другими словами, речь должна идти о компьютерной автоматизированной системе принятия решений, не заменяющей, конечно, человека, но существенно помогающей ему компетентно действовать в той или иной конкретной ситуции.

Не имея возможности обсудить все аспектыы выполняемой нами работы, ниже мы коротко даем сведения о методологии моделирования экологических процессов в водных экосистемах и некоторых фрагментах упомянутой системы принятия решений. Конечно, здесь мы ни в коей мере не претендуем на полноту и охват всех исследований, связанных с поставленной выше проблемой управления качеством воды в Санкт-Петербурге или другом крупном городе, расположенном на берегах или в дельте реки.


2. Моделирование экологических процессов в водной среде


2.1. История вопроса и его современное состояние


Цель данного раздела - лишь беглый обзор тех исследований, на которых в той или иной степени базируются наши разработки. Поэтому выбор литературы имеет в значительной степени субъективный характер, ибо отражает личный опыт авторов настоящей работы и ее региональную специфику. Узкий специалист обнаружит в своей области несомненные пробелы и упущения, однако в смежных или вовсе далеких областях он может найти и нечто новое - это неизбежная плата за широту и комплексность проблемы, о которой говорилось в разделе I.

Начнем с моделирования водных экологических систем, а именно с самой разработанной области - моделирования течений и турбулентной диффузии в водоемах и водотоках. Здесь имеются твердо установленные и не подвергающиеся сомнению математические уравнения движения воды [1]. Вся проблема моделирования переноса взвешенных и растворенных в воде веществ, грубо говоря, сводится к решению этих уравнений численными методами при заданных начальных и граничных условиях, а также при соответствующих численных значениях коэффициентов.

Часто уравнения удается упростить, например, для Невской губы вполне удовлетворительно работает теория мелкой воды [2]. Однако, как показывает практика [3,4,5], определение достаточно надежных значений коэффициентов турбулентной диффузии сопряжено со значительными трудностями. Дело в том, что величины этих коэффициентов существенно зависят от плотностей и термической стратификации водоема, а в вертикальном и горизонтальном направлениях различаются на несколько порядков.

Не меньшие трудности возникают при попытках адекватного описания воздействия ветра на поверхность водоема, особенно если учитывать образование волн, или взаимодействия объемов воды и дна водоема. Моделирование гидродинамики рек [6,7] имеет свои особенности и трудности, главным образом в описании переноса взвешенных частиц (размывание берегов и образование отмелей, что актуально для условий Невской губы).

Моделирование процессов переноса консервативных примесей (т.е. таких, которые не вступают в химические реакции и не преобразуются в процессе переноса) - это наиболее разработанный участок моделирования водных экологических систем, хотя и здесь есть много неясных и нерешенных вопросов. Совсем другое положение в области моделирования гидрохимической и особенно гидробиологической части водных экологических систем [8], а ведь с точки зрения формирования качества воды эти стороны функционирования экосистемы имеют решающее значение. Разделить химическую и биологическую компоненту водной экосистемы практически не удается и приходится с самого начала рассматривать их как единое целое, что никак не облегчает процесс моделирования.

Если уравнения гидродинамики восходят к XVIII веку (Леонард Эйлер) и окончательно были сформулированы в конце XIX века, причем весь XX век ушел на разработку методов их решения для конкретных практических случаев, то уравнения химической кинетики появились только в конце прошлого века, а удовлетворительных уравнений динамики биологических систем не существует вплоть до настоящего времени. Даже имитация такого, казалось бы, не очень сложного физико-химического процесса, как распространение по поверхности водоема пленки нефтепродуктов при наличии ветра, встречает серьезные трудности [9]. Еще сложнее обстоит дело, если в процессе распространения загрязняющей примеси необходимо учитывать явления сорбции или перехода в другое фазовое состояние.

Литература по моделированию в экологии огромна, достаточно сказать, что библиографический указатель только отечественных работ, выполненных до 1980 года [10], насчитывает около 1800 названий. К сожалению, в последующие годы издание указателя прекратилось.

Одной из первых моделей водной экосистемы была модель планктонного сообщества, разработанная Г.Рейли, Е.Стомелом и Д.Бампусом [11] в 1948 году в виде системы дифференциальных уравнений. Это направление успешно развивал А.А.Ляпунов [12], причем практические результаты удалось получить только численными методами с применением ЭВМ [13].

Первым практическим испытанием метода моделирования экологических систем было решение задачи об оптимальном режиме рыболовства. Эти работы были начаты нашим соотечественником Ф.И.Барановым еще в 1918 году [14], а затем развиты европейскими и американскими учеными [15,16]. Испытание данный метод моделирования выдержал с честью: в настоящее время ни одна международная конвенция по рыболовству не заключается без предварительного апробирования на компьютерной модели возможных результатов принимаемых решений.

Следующее практическое применение метода компьютерного моделирования связано с явлением эвтрофирования внутренних водоемов (озер и водохранилищ). Существо этого процесса заключается в том, что из-за интенсификации сельского хозяйства и сброса сточных вод, содержащих азот и фосфор, происходит интенсивное развитие планктонных одноклеточных водорослей (фитопланктона), которое может привести к необратимым изменениям в экосистеме водоема вплоть до возникновения заморов (дефицит кислорода в воде), гибели рыбы и резкого ухудшения качества воды. На территории бывшего СССР такие явления в наиболее катастрофической форме наблюдались на Киевском водохранилище. Не избежали эвтрофирования Ладожское озеро и Балтийское море.

Компьютерному моделированию процесса эвтрофикации посвящено большое количество работ [17-32]. Объектами моделирования были небольшие альпийские озера, гиперэвтрофированные от избытка фосфора озера Дании, озеро Виктория в экваториальной Африке, насыщенные гумиловыми кислотами озера Финляндии, заливы Великих Американских озер, в которых интенсивно развиваются диатомовые и сине-зеленые водоросли, залив Хиросима в Японии, озеро Эри и многие другие. Процессу эвтрофикации Ладожского озера посвящены специальные монографии и компьютерные модели [33-35]. В результате объединенных усилий ученых разных стран к настоящему времени выработалась более или менее надежная методика моделирования и прогноза процесса эвтрофикации водоемов.

Общие вопросы моделирования эколого-экономических систем (библиографию см. в [8, 36]) разрабатывались применительно к проблеме управления качеством воды не только в теоретическом плане, но и практически. Например, при созданиии проектов по водопользованию рек Англии (Темза, Кем, Трент) интенсивно использовали имитационное моделирование. Не меньшую роль играли имитационные методы в деле борьбы с эвтрофикацией озера Эри и других озер США.

В отечественной практике в большом числе публикаций по стратегии природопользования следует отметить исследования Р.Г.Хлебопроса [36], которые использованы в настоящих исследованиях. Что касается наших исследований конкретно по теме данной работы, то они отражены в публикациях [ 8, 33, 37-50 ].

Нельзя также не упомянуть заметный вклад в работы по методологии моделирования и в конкретные исследования водных экосистем северо-запада России разработки других петербургских ученых [4-5, 14, 34-35, 39-42,51-57].


2.2. Имитация гидрохимических и гидробиологических процессов в ячейке экосистемы


Для того, чтобы продемонстрировать, каким образом можно описывать и прогнозировать с помощью компьютерных методов процессы в водной экосистеме, рассмотрим подробнее одну из простых моделей, которую мы использовали в разрабатываемом программном комплексе. В ней оставлены только самые необходимые элементы, без которых описание функционирования экосистемы и ее реакции на выброс загрязняющих веществ в воду просто невозможен. Структура ячейки выбрана постоянной, как для Ладожского озера, так и для реки Невы, Невской губы и восточной части Финского залива.

Состояние ячейки экологической системы определяется концентрацией биомассы фитопланктона (PHYT), выраженной в г/м, концентрацией мертвого органического вещества (DETR), выраженной в тех же единицах, а также концентрацией биогена (PHOS), выраженной в мг/м. Концентрация токсиканта (TOX) выражается в условных единицах. Здесь мы используем те же самые обозначения, что и в компьютерной модели.

Основой функционирования водной экосистемы являются соотношения биотического баланса, которые в данном случае имеют вид:

PHYT(T+1) = PHYT(T) + PROD - MORT

DETR(T+1) = DETR(T) + MORT - DEST - SED

PHOS(T+1) = PHOS(T) + DEST * РA - PROD * PA ,

где PROD - продукция фитопланктона, MORT - отмирание фитопланктона, DEST - бактериальное разложение детрита, SED - осаждение детрита на дно, PA - переходной коэффициент, учитывающий содержание биогена в органическом веществе и различные единицы измерения концентрации биогена и биомассы фитопланктона, Т - квант времени.

Продукция фитопланктона является функцией солнечной радиации (RAD), прозрачности воды (TRANS), глубины водоема (Н), концентрации биогена (РНОS) и температуры воды (ТЕМ):

PROD = PROD(RAD, TRANS, PHOS, PA, TEM, H)

Предполагается, что продукция лимитируется доступной солнечной энергией и наличием биогенов. Конечно, принятая зависимость отражает процесс фотосинтетического образования органического вещества только в самых общих чертах, но в качестве первого приближения этого достаточно; в противном случае мы можем описать одну часть системы излишне подробно по сравнению с другими, в то время как конечный продукт моделирования определяется наиболее грубой частью модели.

Скорость отмирания фитопланктона является функцией его биомассы (PHYT), температуры воды (ТЕМ), концентрации токсиканта (ТОХ):

MORT = MORT(PHYT, TEМ, TOX, MORTOX, MORTCOEF),

где MORTCOEF - коэффициент смертности фитопланктона при температуре выше 5 градусов (при более низких температурах коэффициент смертности удваивается), MORTOX - степень влияния токсиканта на смертность фитопланктона (при MORTOX = 1 такое влияние отсутствует).

Скорость бактериального разложения мертвого органического вещества также оформлена в виде отдельной функции:

DEST = DEST(DETR, TEM, DESTRCOEF),

где DESTRCOEF - коэффициент разложения детрита при температуре TEM = 20 градусов. Температурная поправка для него осуществляется с помощью функции KROC(TEM):

KROC = 2.3

Несмотря на явную упрощенность модели ячейки водной экосистемы, она представляет собой нелинейную систему, свойства которой не так уж очевидны. Поэтому полезно рассмотреть реакцию такой модельной экосистемы на изменение входных величин и параметров.

В компьютерной программе все перечисленные параметры обрабатываются в специальной подпрограмме-функции ECOSYS, учитывающей также влияние коэффициента седиментации детрита SEDCOEF:

ECOSYS = ЕСОSYS(H, PHYT, PHOS, DETR, TOX, RAD, TRANS, TEM, DESTRCOEF, MORTOX, MORTCOEF, SEDCOEF) :

Заметим, что описанная ячейка водной экосистемы может иметь отличное от нуля устойчивое состояние только при постоянном притоке биогена или детрита, в противное случае рано или поздно вся органика, содержащаяся в системе, переходит в донные отложения. Для описания свойств исследуемой системы (здесь - ячейки экосистемы) используется т.н. коэффициент чувствительности переменной Х системы к изменению параметра Y:

K(X,Y) = ,

где X0 - установившееся значение переменной X при при значении параметра Y0, а X - новое установившееся значение переменной X при переходе от значения Y0 к Y.

В качестве примера работы модели рассмотрим несколько простых случаев. Примем для начала следующие исходные и не очень правдоподобные в наших климатических условиях значения параметров: DESTRCOEF = 0.1, SEDCOEF = 0.5, MORTOX = 1.3, MORTCOEF = 0.2, H = 10м, TRANS = 2м, TEM = 20, RAD = 1. Тогда при поступлении в систему биогена в количестве INP = 10 мг/м сут. (= 3.6 г/мгод) получаются коэффициенты чувствительности, приведенные в Таблице 1. Рассматриваемое состояние экосистемы соответствует тому случаю, при котором продукция фитопланктона определяется радиацией, а биоген находится в избытке. Природной аналогии такому состоянию в условиях северо-запада России нет, т.к. в этих широтах водные экосистемы весь вегетационный период находятся в состояниях, далеких от равновесного из-за большого влияния лимитирующих факторов.


Таблица 1

Коэффициенты чувствительности ячейки экосистемы при RAD = 1 и INP = 10 мг/мсут





X0

INP

RAD

H

TEM

DESTR

COEF

SED

COEF

MORT

COEF

PHYT

0.77г/м

0

+0.5

-0.5

+0.67

0

0

-0.5

PHOS

91 мг/ м

+3.2

-0.97

-0.10

-0.36

+0.86

-0.98

+0.02

DETR

1.33 г/м

0

+0.5

-0.4

+0.15

-0.40

-0.25

0

SED

0.067 г/мсут

0

+0.5

-0.7

+0.14

-0.40

+0.50

0

PROD

0.200 г/мсут

0

+0.5

-0.5

+0.34

0

0

0




MORT

0.200 г/мсут

0

+0.5

-0.5

+0.34

0

0

0




DEST

0.133 г/мсут

0

+0.5

-0.4

+0.43

+0.20

-0.25

0




Увеличение поступления биогенов никак не действует в данном случае на систему, кроме как на концентрацию биогенов в воде, а вот увеличение солнечной радиации ведет к увеличению значений всех компонентов, кроме концентрации биогенов, которая сокращается из-за усиленного потребления водорослями. Увеличение глубины водоема при прочих равных условиях снижает в разной степени все исследуемые величины. Повышение температуры в основном интенсифицирует все процессы.

В Таблице 2 приведены данные для другого случая, при котором продукция фитопланктона лимитируется наличным количеством биогенов.


Таблица 2

Коэффициенты чувствительности ячейки экосистемы при RAD = 20 и INP = 100 мг/мсут





X0

INP

RAD

H

TEM

DESTR

COEF

SED

COEF

MORT

COEF

PHTY

11.5г/м

+0.33

0

-0.33

+0.61

+0.33

-0.33

-0.50

PHOS

30 мг/ м




0

-0.33

-0.17

+15.9

-0.33

0

DETR

20 г/м

+0.33

0

-0.20

0

-0.20

-0.50

0

SED

1 г/мсут

+0.33

0

-0.60

0

-0.20

0

0

PROD

3 г/мсут

+0.33

0

-0.33

+0.23

+0.33

-0.33

0

MORT

3 г/мсут

+0.33

0

-0.33

+0.23

+0.33

-0.33

0

DEST

2 г/мсут

+0.33

0

-0.20

+0.43

+0.60

-0.50

0



Заметим, что в случае повышения поступления биогена в ячейку стационарное состояние нарушается и происходит накапливание биогена, с которым уже не может справится процесс седиментации.

Материал таблиц 1 и 2 показывает, что даже в искусственных стационарных условиях, которые не встречаются в наших широтах, принятая упрощенная модель ведет себя достаточно сложно и правдоподобно. Разумеется, что в более общей модели, включенной в макет, используется множество моделей ячеек, подобных описанной.