Лекция 12 -2011

Вид материалаЛекция

Содержание


Биогеохимические циклы алюминия, железа и марганца
Биогеохимические циклы тяжелых металлов.
Подобный материал:
1   2   3   4

Биогеохимические циклы алюминия, железа и марганца

Алюминий один из трех наиболее распространенных элементов земной коры. Его кларк – 8,05. Железо по распространенности занимает второе место после алюминия среди металлов и четвертое среди всех элементов земной коры. Его кларк составляет 4,65. Содержание марганца в земной коре значительно ниже -0,1%. Эти два элемента занимают соседние места в периодической системе элементов Д.И. Менделеева и имеют сходное строение электронных оболочек. Однако марганец мигрирует более активно, т.к. значение рН, при котором выпадает в осадок его гидроксид, выше, чем для железа. Железо и марганец активно вовлекаются в биологический круговорот, так как входят в состав многих ферментов. Железо участвует в образовании хлорофилла и входит в состав гемоглобина. Марганец принимает участие в окислительно-восстановительных реакций – дыхании, фотосинтезе и усвоении азота. Участие алюминия в биологическом круговороте ограничено. Хотя в земной коре это самый распространенный металл, биофильность его очень низкая, кларк живого вещества всего 5х10-3.

Биогеохимичекие циклы железа и марганца в решающей степени зависят от условий увлажнения, реакции среды, степени аэрации почвы, условий разложения органического вещества. Миграция алюминия в меньшей степени зависит от окислительно-восстановительных условий, так как он обладает постоянной валентностью. В то же время, амфотерность этого элемента обуславливает сильную зависимость его миграции от кислотно-основных условий среды: в сильно кислой среде он ведет себя как катион, а в сильно щелочной – как анион. В нейтральных и слабощелочных водах степей и пустынь он почти не мигрирует, наиболее высока подвижность этого металла в сильно кислых водах районов активного вулканизма и зон окисления сульфидных месторождений. Под защитой органических коллоидов алюминий активно мигрирует в болотных водах. Тем не менее, интенсивность миграции алюминия в целом значительно ниже, чем у железа и марганца, а его минералы более устойчивы. Слабая подвижность алюминия определяет остаточное (за счет выноса более подвижных элементов) накопление его гидроксидов в коре выветривания влажных тропиков и образование бокситов.

Известно, что соединения алюминия, железа и марганца в почвах с промывным режимом мигрируют в вертикальном направлении и образуют иллювиальные горизонты, обогащенные полуторными окислами и марганцем. Многими исследователями доказано, что миграция полуторных окислов в условиях промывного типа водного режима происходит в виде высокодисперсных золей, стабилизированных кислым гумусом. При этом немаловажную роль играет создание анаэробной обстановки, обуславливающей образование соединений двухвалентного железа и марганца. Решающее значение имеют агрессивные фульвокислоты, разрушающие почвенные минералы и образующие с алюминием, железом и марганцем легкоподвижные комплексные соединения.

Соединения железа и марганца активно мигрируют с боковым внутрипочвенным стоком, образуя скопления конкреций в болотах луговых и глеевых почвах, мелководных озерах и лагунах. Это свидетельствует о способности этих соединений мигрировать на весьма большие расстояния. Осаждение железа в аккумулятивных ландшафтах происходит в виде карбонатов железа, окислов разной степени гидратированности, а также фосфатов и гуматов. В степях и пустынях в условиях щелочной среды эти элементы мигрируют слабо.

Миграция железа и марганца возможна и в составе живого вещества. После отмирания организмов и их минерализации в почве часть этих элементов закрепляется в почве, другая же часть поступает в природные воды. Возвращаясь в почву, они начинают новый биогеохимический цикл.

В результате процессов выветривания железо в огромных количествах выносится в океаны. Вынос железа реками в океан происходит в разнообразных формах – в виде грубых взвесей обломков минералов и пород, содержащих железо в кристаллической решетке (силикатов, в т.ч. глинистых минералов), в виде коллоидов, содержащих железо в абсорбированном состоянии, в виде гидратов, гуматов и органических соединений закисного железа.

Недостаток железа приводит у растений к заболеванию, известному под названием хлороз. Однако непосредственное накопление железа в значительных количествах характерно лишь для немногих организмов. В этом отношении уникальны железобактерии, окисляющие двухвалентное железо, в результате чего образуется лимонит. Диатомовые водоросли способны усваивать железо из нерастворимых коллоидов. Железо потребляет и зоопланктон с красной кровью (мелкие рачки). При гибели этих организмов и растворения детритовых частей определенное количество железа также переходит в раствор в виде гидратов и других форм. В качестве особых случае концентрации железа организмами можно отметить наличие магнетита и гетита в в зубах некоторых современных гастропод.

Биогеохимический цикл железа и марганца существенно нарушается техногенными процессами, причем, несмотря на значительно более высокое содержание в земной коре железа, технофильность этих элементов примерно равна. В ноосфере алюминий играет исключительно важную роль, но технофильность его почти в 100 раз ниже, чем у железа.

Биогеохимические циклы тяжелых металлов.

Тяжелыми металлами обычно называют химические элементы, имеющие атомную массу более 50 единиц. Несмотря на сравнительно низкую распространенность этих элементов в природе, они оказывают большое влияние на биогеохимические процессы в биосфере. Так как многие изних оказывают выраженное токсическое действие на живые организмы.

Многочисленными исследованиями установлено, что наиболее токсичными являются следующие 9 элементов: Cr, As, Ni, Sb, Pb, Vo, Cd, Hg, Ta. Польские ученые провели ранжирование тяжелых металлов по потенциалу загрязнения на 4 группы. К группе элементов с очень высоким потенциалом загрязнения отнесены кадмий, ртуть, свинец, медь, таллий, олово, хром, сурьма, серебро, золото.

К группе элементов с высоким потенциалом загрязнения относятся висмут, уран. Молибден, барий, марганец, титан, железо, селен, теллур. К группе элементов со средним потенциалом загрязнения относятся фтор, бериллий, ванадий, рубидий, никель, кобальт, мышьяк, германий, индий, цезий, вольфрам. Элементы со слабым потенциалом загрязнения – стронций, цирконий, лантан, ниобий.

Как видно, 4 металла из первой группы (с очень высоким потенциалом загрязнения) – свинец, ртуть, кадмий и хром

В известной степени каждый крупный город является причиной возникновения биогеохимических аномалий, в том числе и опасных для человека.

Общеизвестно, что накопление свинца и цинка происходит в зонах интенсивного движения автотранспорта, вдоль автострад и в индустриальных центрах. Почвы в сельской местности содержат в 10-20 раз меньше свинца. Чем почвы городов. Свинец обладает способностью накапливаться в органическом веществе почв.

Доступность тяжелых металлов растениям зависит от вида растений, почвенных и климатических условий. У каждого вида растений концентрации тяжелых металлов могут варьировать в различных частях и органах, а также зависят от возраста растений.

К почвенным факторам, существенно влияющим на доступность для растений тяжелых металлов относятся: гранулометрический состав, реакция среды почвы,, содержание органического вещества, катионообменная способность и дренаж. В более тяжелых почвах меньшая опасность возможной адсорбции растениями избыточного (токсичного) количества тяжелых металлов. С повышением рН почвенного раствора возрастает вероятность образования нерастворимых гидроксидов и карбонатов. Сложилось мнение, что для снижения до минимума доступности токсичного металла в почве необходимо поддерживать рН не ниже 6,5. Металлы могут образовывать сложные комплексные соединения с органическим веществом почвы, и поэтому в почвах с высоким содержанием гумуса они менее доступны для поглощения растениями. Обменная емкость катионов зависит, главным образом, от содержания и минералогического состава глинистой части почв и содержания в них органического вещества. Чем выше обменная емкость катионов, тем больше удерживающая способность почв по отношению к тяжелым металлам.

Избыток воды в почве способствует появлению в ней металлов с низкой валентностью в более растворимой форме.

Приоритетные загрязнители биосферы – ртуть, свинец, кадмий, цинк, медь. Увеличение их концентрации в воде, почве, воздухе и биоте является прямым показателем опасности для животных и человека.