Магазины электрических величин
Вид материала | Документы |
- Рабочей программы дисциплины Электроэнергетические системы и сети по направлению подготовки, 21.71kb.
- Отчет по лабораторной работе должен содержать: наименование работы и номер, схемы, 365.83kb.
- Экзаменационные вопросы по курсу «Электротехника и электроника», 23.91kb.
- Бизнес-план магазина товаров для детей Содержание, 138.19kb.
- 1. Основные понятия и обозначения электрических величин и элементов электрических цепей., 277.03kb.
- Цифровой вольтметр щ-304, 137.06kb.
- Телемеханики, 26.01kb.
- Отдел метрологического обеспечения измерений электрических величин, 42.58kb.
- Курсовая работа по курсу «основы физических измерений», 226.86kb.
- Теория электрических цепей (часть, 63kb.
Различают два осн. класса магн. в-в, связанных с определённой М. с. а.: в-ва с ненулевым суммарным макроскопич. магн. моментом (М0) и в-ва с M=0. Первому случаю соответствует ферромагнитная М. с. а. (рис. 1, а): магн. моменты всех атомов выстраиваются вдоль одного направления (оси лёгкого намагничивания), к-рое может быть различным у разных кристаллов. Второму случаю соответствует антиферромагнитная М. с. а. (рис. 1,6): у каждого магн. момента в ближайшем окружении имеется компенсирующий момент, ориентированный строго антипараллельно. В зависимости от хар-ра ближайшего окружения могут осуществляться разл. антиферромагн. М. с. а. (рис. 1, б, в и г), к-рые могут иметь периоды большие, чем периоды ат. структуры, в целое число раз. Иногда осуществляются антиферромагн. М. с. а. с ориентацией магн. моментов вдоль двух или трёх осей и ещё более сложные -— зонтичные, треугольные и др. (рис. 1, д, е).
Близки к антпферромагн. М. с. а. ферримагн. структуры с М0. Они имеют место, когда антиферромагн. М. с. а. образуется атомами или ионами с разными по величине магн. моментами (рис. 1, ж). При этом значение М определяется величиной разности моментов двух или более подрешёток магнитных (систем одинаково
ориентированных магн. моментов). Другой случай осуществляется в слабых ферромагнетиках: наличие дополнит. сил межатомного вз-ствия приводит к неколлинеарностн магн. моментов и появлению суммарной ферромагн. составляющей (рис. 1. з, см. также Слабый ферромагнетизм).

Рис. 1. Типы магн. структур: а — ферромагнитная, периоды атомной а и магнитной элем. ячеек совпадают; б, в и г — антиферромагн. структуры, период магн. структуры м в нек-рых направлениях в-ва раза больше ; д — треугольная; е — зонтичная; ж — ферримагнитная; з — слабосферромагнитная; угол склонения на рисунке сильно увеличен.
Более сложный (дальнодействующий) хар-р межатомного вз-ствия в нек-рых случаях приводит к установлению геликоидальных М. с. а. В последних магн. моменты соседних атомов повёрнуты друг относительно друга так, что концы изображающих их векторов лежат на одной спиральной линии. В зависимости от величины проекции магн. моментов на направление оси спирали различают неск. видов геликоидальных М. с. а. (рис. 2). Существенное отличие их от остальных М. с. а. заключается в том, что в общем случае шаг спирали
367
несоизмерим с соответствующим периодом кристаллич. решётки и, кроме того, зависит от темп-ры.
Полная классификация М. с. а. основывается на теории магнитной симметрии, учитывающей не только расположение, но и ориентацию ат. магн. моментов в кристалле. В число

Рис. 2. Примеры спиральных магн. структур ( — период спирали): а — простая спираль с нулевым значением проекции магн. момента на ось спирали; б — ферромагнитная (коническая) спираль с пост. значением проекции магн. момента на ось спирали.
преобразований магн. симметрии, кроме обычных поворотов вокруг осей симметрии, отражения в плоскостях симметрии и трансляций, дополнительно входит преобразование R, изменяющее направления магн. моментов на противоположные. В-ва, обладающие М. с. а., описываются группами магн. симметрии, в к-рые R входит в виде произведений с обычными преобразованиями симметрии кристаллов.
М. с. а. кристалла и его физические (в первую очередь магнитные) св-ва тесно взаимосвязаны. Поэтому косвенные суждения о М. с. а. могут быть высказаны на основе данных об этих физ. свойствах в-ва. Прямые данные о М. с. а. кристаллов позволяет получить магн. нейтронография.
• И з ю м о в Ю. А., О з е р о в Р. П., Магнитная нейтронография, М., 1966; В о н с о в с к и й С. В., Магнетизм, М., 1971; К о п ц и к В. А., Шубниковские группы, М., 1966.
Р. П. Озеров.
МАГНИТНАЯ ТЕКСТУРА, см. Текстура магнитная.
МАГНИТНАЯ ТЕРМОМЕТРИЯ, метод измерения темп-р (ниже 1 К), основанный на температурной зависимости магнитной восприимчивости к парамагнетика (см. Термометрия). Для М. т. подбирают парамагнетики, у к-рых простейшим образом зависит от темп-ры: =С/Т (см. Кюри закон). По измеренному в слабом магн. поле значению к и известной для данного парамагнетика постоянной Кюри С может быть определена т. н. м а г н и т н а я темп-pa Т*. В области темп-р, в к-рой выполняется закон Кюри, Т* совпадает с темп-рой Т по термодинамич. температурной шкале. При понижении темп-ры закон Кюри перестаёт быть точным, и Т* может заметно отличаться от Т. Для получения более точных результатов необходимо учитывать анизотропию восприимчивости, геом. форму образца и др. факторы. Наиболее широко для измерения сверхнизких темп-р (до 6 мК) применяют церий-магниевый нитрат, для к-рого расхождение шкал Т и Т* при указанной темп-ре меньше 0,1 мК. Для измерения темп-р ниже 10 мК используют температурную зависимость ядерной магн. восприимчивости Pt или Cu, к-рая следует закону Кюри до темп-ры в неск. мК. Кроме закона Кюри в яд. термометрии применяют правило Корринга для времени релаксации т яд. спиновой системы: T=const. Практически магн. темп-ру переводят в термодинамическую по таблицам и кривым, составленным на основании тщательных исследований зависимости (T).
• Физика низких температур, пер. с англ., под ред. А. И. Шальникова, М., 1959, гл. 7; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971.
МАГНИТНАЯ ЦЕПЬ, последовательность магнетиков, по к-рым проходит магнитный поток. Понятием М. ц. широко пользуются при расчётах пост. магнитов, электромагнитов, реле, магн. усилителей, электроизмерит. и др. приборов. В технике распространены как М. ц., в к-рых магн. поток практически полностью проходит в ферромагнетиках (замкнутые М. ц.), так и М. ц., включающие, помимо ферромагнетиков, диамагнетики (напр., возд. зазоры). Если магн. поток возбуждается в М. ц. пост. магнитами, то такую цепь называют поляризованной. М. ц. без пост. магнитов наз. нейтральной; магн. поток в ней возбуждается током, протекающим в обмотках, охватывающих часть или всю М. ц. В зависимости от хар-ра тока возбуждения различают
М. ц. п о с т о я н н о г о, п е р е м е н н о г о и и м п у л ь с н о г о магн. потоков. Вследствие формальной аналогии электрич. и магн. цепей к ним применим общий матем. аппарат. Напр., для М. ц. аналогом Ома закона служит ф-ла F=Ф•Rm, где Ф — магн. поток, Rm — магнитное сопротивление, F — магнитодвижущая сила. К М. ц. применимы Кирхгофа правила. Существует, однако, и принципиальное различие между М. ц. и электрич. цепью: в М. ц. с неизменным во времени потоком Ф не выделяется Джоулева теплота (см. Джоуля — Ленца закон), т. е. нет рассеяния эл.-магн. энергии.
• Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики); П о л и в а н о в К. М., Ферромагнетики, М.—Л., 1957.
МАГНИТНОЕ ДАВЛЕНИЕ, действие, оказываемое вмороженным магн. полем на плазму (или проводящую жидкость), направленное перпендикулярно силовым линиям. М. д. равно плотности магн. энергии, т. ё. пропорц. квадрату напряжённости магн. поля H: рм=H2/8 (в . ед. СГС). М. д. может уравновешиваться кинетич. давлением плазмы; превышение М. д. над кинетическим приводит к пинч-эффекту.
МАГНИТНОЕ НАСЫЩЕНИЕ, состояние парамагнетика или ферромагнетика, при к-ром его намагниченность J достигает предельного значения J — намагниченности насыщения, не меняющейся при дальнейшем увеличении напряжённости намагничивающего поля. В случае ферромагнетиков J достигается при окончании т. н. процессов технич. намагничивания: а) роста доменов с магн. моментом, ориентированным по оси лёгкого намагничивания, в результате процесса смещения границ доменов; б) поворота вектора намагниченности образца в направлении намагничивающего поля (процесса вращения); и парапроцесса — увеличения под действием сильного внеш. поля числа спинов, ориентированных по полю, за счёт спинов, имеющих антнпараллельную ориентацию (см. Намагничивания кривые). На практике обычно получают технич. М. н. при 20°С в полях от неск. Э до ~104 Э. В случае парамагнетиков состояние, близкое к М. н., достигается в полях
~10 кЭ (~103 кА/м) при темп-рах ~1 К.
• Вонсовский С. В., Магнетизм, М.. 1971.
МАГНИТНОЕ ОХЛАЖДЕНИЕ, метод получения темп-р ниже 1 К путём адиабатич. размагничивания парамагн. в-в. Предложен П. Дебаем и амер. физиком У. Джиоком (1926); впервые осуществлён в 1933. М. о.— один из двух практически применяемых методов получения темп-р ниже 0,3 К (другим методом явл. растворение жидкого гелия 3Не в жидком 4Не).
Для М. о. применяют соли редкоземельных элементов (напр., сульфат гадолиния), хромокалиевые, железоаммониевые, хромометиламмониевые квасцы и ряд др. парамагн. в-в. Крист. решётка этих в-в содержит парамагн. ионы Fe, Cr, Gd, к-рые разделены в крист. решётке большим числом немагн. ионов и поэтому взаимодействуют между собой слабо: даже при низких темп-pax, когда тепловое движение значительно ослаблено, силы магн. вз-ствия не способны упорядочить систему хаотически ориентированных спинов. В методе М. о. применяется достаточно сильное (~ неск. десятков кЭ) внеш. магн. поле, к-рое, упорядочивая направление спинов, намагничивает парамагнетик. При выключении внеш. поля (размагничивании парамагнетика) спины под действием теплового движения атомов (ионов) крист. решётки
368
вновь приобретают хаотич. ориентацию. Если размагничивание осуществляется адиабатически (в условиях теплоизоляции), то темп-ра парамагнетика понижается (см. Магнетокалорический эффект).
Процесс М. о. принято изображать на термодинамич. диаграмме в координатах: темп-pa Т — энтропия S (рис. 1).

Рис. 1. Энтропийная диаграмма процесса магн. охлаждения (S — энтропия, Т — темп-ра). Кривая S0— изменение энтропии рабочего в-ва с темп-рой без магн. поля; SH— изменение энтропии в-ва в поле напряжённостью Н; Sреш — энтропия кристаллич.решётки (Sреш~T3); Tкон — конечная темп-ра в цикле магн. охлаждения.
Получение низких темп-р связано с достижением состояний, в к-рых в-во обладает малыми значениями энтропии. В энтропию кристаллич. парамагнетика, характеризующую неупорядоченность его структуры, свою долю вносят тепловые колебания атомов крист. решётки («тепловой беспорядок») и разориентированность спинов («магнитный беспорядок»). При Т 0 энтропия решётки Sреш убывает быстрее энтропии системы спинов Sмагн, так что Sреш при темп-рах Т 1 К становится исчезающе малой по сравнению с Sмагн. В этих условиях возникает возможность осуществить М. о.
Цикл М. о. (рис. 1) состоит из двух стадий: 1) изотермич. намагничивания линия АБ) и 2) адиабатич. размагничивания парамагнетика (линия БВ). Перед намагничиванием темп-ру парамагнетика при помощи жидкого гелия понижают до Т~1 К и поддерживают её постоянной на протяжении всей первой стадии М. о. Намагничивание сопровождается выделением теплоты и уменьшением энтропии до значения SН. На второй стадии I. о. в процессе адиабатич. размагничивания энтропия парамагнетика остаётся постоянной и его темп-pa понижается (линия БВ).
Вз-ствие спинов между собой и с крист. решёткой определяет темп-ру, при к-рой начинается резкий спад кривой Sмагн при Т 0. Чем слабее :1-ствие спинов, тем более низкие темп-ры можно получить методом М. о. парамагн. соли позволяют достичь темп-р ~ 5•10-3 К.
Значительно более низких темп-р удалось достигнуть, используя ядерный парамагнетизм. Вз-ствие ядерных магн. моментов значительно слабее вз-ствия магн. моментов ионов. Для намагничивания до насыщения системы ядерных магн. моментов даже при T=1 К требуются очень сильные магн. поля (~107 Э). При применяемых полях ~ 105 Э намагничивание до насыщения возможно при темп-рах ~0,01 К. При исходной темп-ре ~0,01 К адиабатич. размагничивание системы яд. спинов (напр., в образце меди) удаётся достигнуть темп-ры 10-5—10-6 К. До этой темп-ры охлаждается не весь образец. Полученная темп-pa (её называют спиновой) характеризует интенсивность теплового движения в системе яд. спинов сразу после размагничивания. Эл-ны же и крист. решётка остаются после размагничивания при исходной темп-ре ~ 0,01 К. Последующий обмен энергией между системами яд. и электронных спинов (посредством спин-спинового взаимодействия) может привести к кратковрем. охлаждению всего в-ва до T~10-4 К (измеряют такие темп-ры методами магнитной термометрии). Практически М. о. осуществляют следующим способом. Блок парамагн. соли С помещается на подвесках из материала с малым коэфф. теплопроводности внутри камеры 1, к-рая погружена в криостат 2 с жидким 4Не (рис. 2, а). Откачкой паров гелия через кран 3 темп-pa в криостате

Рис. 2. Схемы установок для магн. охлаждения: а — одноступенчатого (N, S — полюсы электромагнита), б — двухступенчатого.
поддерживается на уровне 1,0—1,2 К (применение жидкого 3Не позволяет снизить исходную темп-ру до ~0,3 К). Теплота, выделяющаяся в соли во время намагничивания, отводится к жидкому гелию газом, заполняющим камеру 7. Перед выключением магн. поля газ из камеры 1 откачивают через кран 4 и т. о. блок парамагн. соли С теплоизолируют от жидкого гелия. После размагничивания темп-pa соли понижается и может достигнуть неск. тысячных К. Запрессовывая в блок соли к.-л. в-во или соединяя в-во с блоком соли пучком тонких медных
проволочек, можно охладить в-во практически до тех же темп-р. Наиболее низкие темп-ры получают методом двухступенчатого М. о. (рис. 2, б). Сначала производят адиабатич. размагничивание соли С и через тепловой ключ (теплопроводящую перемычку) К охлаждают предварительно намагниченную соль D. Затем, после размыкания ключа K, размагничивают соль D, к-рая при этом охлаждается до темп-ры, существенно более низкой, чем была получена в блоке соли С. Тепловым ключом в установках описанного типа обычно служит проволочка из сверхпроводящего в-ва, теплопроводности к-рой в норм. и сверхпроводящем состояниях при T~0,1 К сильно отличаются (во много раз). По схеме рис. 2, б осуществляют и яд. размагничивание с тем отличием, что соль D заменяют образцом (напр., меди), для намагничивания к-рого применяется поле напряжённостью в неск. десятков кЭ.
М. о. широко используется при изучении низкотемпературных св-в жидкого 3Не (сверхтекучести и др.), квант. явлений в тв. телах (напр., сверхпроводимости), св-в ат. ядер и т. д.
• Вонсовский С. В., Магнетизм, М., 1971, с. 368—82; Д е-К л е р к Д., Адиабатическое размагничивание, в кн.: Физика низких температур, пер. с англ., под ред. А. И. Шальникова, М., 1959, с. 421—610; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; А м 6 л е р Е., Х а д с о н Р. П., Магнитное охлаждение, «УФН», 1959, т. 67, в. 3.
А. Б. Фрадков.
МАГНИТНОЕ ПОЛЕ, силовое поле, действующее на движущиеся электрич. заряды и на тела, обладающие магнитным моментом (независимо от состояния их движения). М. п. характеризуется вектором магнитной индукции В. Значение В определяет силу, действующую в данной точке поля на движущийся электрич. заряд (см. Лоренца сила) и на тела, имеющие магн. момент.
Термин «М. п.» ввёл в 1845 англ. физик М. Фарадей, считавший, что как электрич., так и магн. вз-ствия осуществляются посредством единого материального поля. Классич. теория эл.-магн. поля была создана англ. физиком Дж. Максвеллом (1873), квант. теория — в 20-х гг. 20 в. (см. Квантовая теория поля).
Источниками макроскопич. М. п. явл. намагниченные тела, проводники с током и движущиеся электрически заряж. тела. Природа этих источников едина: М. п. возникает в результате движения заряж. микрочастиц (эл-нов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магн. момента (см. Магнетизм).
Перем. М. п. возникает также при изменении во времени электрич. поля. В свою очередь, при изменении во вре-
369
мени М. п. возникает электрич. поле. Полное описание электрич. и магн. полей в их взаимосвязи дают Максвелла уравнения. Для хар-ки М. п. часто вводят силовые линии поля (линии магн. индукции). В каждой точке такой линии вектор В расположен вдоль касательной. В местах повышенных значений В линии индукции сгущаются, в тех же местах, где поле слабее, линии расходятся (рис.).
Для М. п. наиболее характерны след. проявления.
1. В пост. однородном М. п. на магн. диполь с магн. моментом рm действует вращающий момент N=[pmB] (так, магн. стрелка в М. п. поворачивается по полю; виток с током I, также обладающий магн. моментом, стремится занять положение, при к-ром его плоскость была бы перпендикулярна линиям индукции; ат. диполь процессирует вдоль силовой линии с характеристич. частотой; рис., а).

Рис. а — действие однородного пост. магн. поля на магн. стрелку, виток с током I и ат. диполь (е — эл-н атома); б — действие однородного пост. магн. поля на свободно движущиеся электрич. заряды +q (их траектория в общем случае имеет вид спирали); в — разделение пучка магн. диполей в неоднородном магн. поле; г — возникновение тока индукции в витке при усилении внеш. магн. поля В (стрелками показано направление тока индукции и создаваемого магн.
поля В ). Pm — магн. момент, q — электрич. заряд, v — скорость заряда.
2. В пост. однородном М. п. действие силы Лоренца приводит к тому, что траектория движения электрич. заряда имеет вид спирали с кривизной, обратно пропорц. скорости (рис., б). Искривление траектории электрич. зарядов под действием силы Лоренца сказывается, напр., в перераспределении тока по сечению проводника при внесении его в М. п. Этот эффект лежит в основе гальваномагн., термомагн. и др. родственных им явлений.
3. В пространственно неоднородном М. п. на магн. диполь рm действует
сила F, перемещающая диполь, ориентированный по полю, в направлении градиента поля: F=grad (рmВ); так, пучок атомов, содержащий атомы с противоположно ориентированными магн. моментами, в неоднородном М. п. разделяется на два расходящихся пучка (рис., в).
4. М. п., непостоянное во времени, оказывает силовое действие на покоящиеся электрич. заряды и приводит их в движение; возникающий при этом в контуре ток Iинд (рис., г) своим М. п. противодействует изменению первоначального М. п. (см. Электромагнитная индукция).
Магн. индукция В определяет ср. макроскопич. М. п., создаваемое в данной точке пр-ва как токами проводимости (движением свободных носителей зарядов), так и имеющимися намагниченными телами. М. п., созданное токами проводимости и независящее от магн. св-в присутствующего в-ва, характеризуется вектором напряжённости магнитного поля Н=B-4J или Н=(B/0)-J (соответственно в СГС системе единиц и Международной системе единиц). В этих соотношениях вектор J — намагниченность в-ва, 0 — магнитная постоянная.
Отношение =В10Н наз. магнитной проницаемостью. В зависимости от величины в-ва делят на диамагнетики (<1) и парамагнетики (>1), в-ва с >>1 наз. ферромагнетиками.
Объёмная плотность энергии М. п. в отсутствии ферромагнетиков: wм=H2/8 или wм=BH/8 (в ед. СГС); wм=0H2/2 или ВН/2 (в ед. СИ).
В общем случае wм=1/2∫HdB, где пределы интегрирования определяются начальными и конечными значениями магн. индукции