Учебное пособие для вузов
Вид материала | Учебное пособие |
СодержаниеШилосошия научной картины мира Раздел VII. Современна» научна» картина мира Философские проблемы современной научной картины мира |
- Учебное пособие для вузов, 757.74kb.
- Учебное пособие для вузов / Г. Р. Колоколов. М.: Издательство «Экзамен», 2006. 256, 66.37kb.
- Учебное пособие для технических вузов Серия «Современное высшее образование», 19249.92kb.
- Учебное пособие для студентов медицинских вузов Волгоград 2003г, 624.61kb.
- Учебное пособие для модульно-рейтинговой технологии обучения Бийск, 2035.37kb.
- Практикум для вузов Москва владос губарева Л. И., Мизирева О. М., Чурилова Т. М., Практикум, 2037.65kb.
- Общий курс физики т-1 Механика: учебное пособие М.: Физматлит, 2002. Сивухин Д. В.,, 679.32kb.
- Учебное пособие для студентов педагогических вузов Автор-составитель, 2925.54kb.
- Лесников Анатолий Ильич, старший преподаватель Уфимского Государственного института, 1383.27kb.
- А. В. Карагодин Местное самоуправление в Белгородской области (финансово-экономический, 1526.61kb.
ШИЛОСОШИЯ НАУЧНОЙ КАРТИНЫ МИРА
1 Философия механистической картины мира
Научной философией Ньютона являлась экспериментальная философия. В ее основу были положены следующие правила философствования:
- Не должно приписывать природных причин сверх тех, которые истинны и достаточны для объяснения явлений.
- Следует, насколько возможно, приписывать одним и тем же следствиям одни и те же причины.
- Основой научных доказательств является эксперимент, причем непосредственный, а не мысленный, как это предлагал Декарт.
Принципы построения «Начал», где изложена механистическая картина мира, Ньютон заимствовал у Евклида: сначала формулируются аксиомы, или законы, затем из них выводятся следствия, которые можно проверить на опыте. Декарт развивал гипотетическую физику, в основе которой лежали умозрительные предположения, не следующие непосредственно из опыта. Физика принципов Ньютона основана на введении аксиом, которые могут не иметь логического обоснования, но истинность которых доказывается опытом.
Символом метафизики Ньютона является сформулированный им основной закон динамики:
~F = ma (8)
где F — сила, действующая на тело с массой та, а — ускорение, которое она сообщает этому телу. В этой формуле введены три метафизические категории: во-первых, масса как мера инертности тел, во-вторых, сила — фактор, который изменяет состояние покоя или равномерного и прямолинейного движения, и ускорение —-характеристика свойств пространства и времени.
Эти свойства, согласно Ньютону, парадоксальны: речь идет об абсолютно пустом пространстве и абсолютном времени. Оба метафизических понятия всегда вызывали большие споры. Сам Ньютон вкладывал в них теологический смысл. Бог, —писал он, — это «бестелесное существо, живое, разумное, всемогущее, которое в бесконечном пространстве, как бы в своем чувствилище, видит все вещи вблизи, прозревает их насквозь и понимает их благодаря непосредственной близости к ним». Ко времени Лапласа эти теологические рассуждения Ньютона были прочно позабыты.
Введенная Ньютоном в законе всемирного тяготения сила гравитации также явилась метафизической категорией: речь шла о мгновенном взаимодействии тел, передаваемом на любые расстояния, причем без каких-либо посредников. Это был загадочный принцип дальнодействия. Декарт пытался снять проблему, заполнив пространство эфирными вихрями. Ньютон опроверг эту гипотезу как необоснованную: «причину свойств силы тяготения я до сих пор не смог вывести из явлений. Гипотез же я не измышляю».
Позднее стало ясно, что для гравитации и других сил можно ввести понятие потенциала, определенного в каждой точке пространства. А это уже понятие поля, которое и можно рассматривать в качестве переносчика взаимодействия. Ключевыми метафизическими категориями в механистической картине мироздания были понятия массы и инерции. Загадкой, не имевшей никакого объяснения, оставалось равенство гравитационной и инертной масс, которое с высокой точностью было доказано в конце XVIII в. в опытах Г. Кавендиша. Что касается инерции, то Ньютон мог дать о ее природе всего лишь тавтологический комментарий: «врожденная сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного и прямолинейного движения».
В этих достаточно неясных рассуждениях скрывалась еще одна метафизическая тонкость: по существу речь шла о состоянии покоя или равномерного и прямолинейного движения относительно абсолютного пространства, причем в абсолютном времени. Существовал только один способ определить систему координат, связанную с абсолютным пространством, — связать ее со сферой неподвижных звезд. Во времена Ньютона это могло казаться приемлемым, но для нас лишено смысла. Пространство и время в классической картине мира — абсолютно самодостаточные категории, существующие безотносительно чего-либо и никак не зависящие от присутствия в них материи.
Абсолютно пустое пространство механистической картины мира обладает свойствами однородности и изотропности, откуда следуют законы симметрии: изменение координат или их поворот не влияют на законы механики. В 1918 г. Э. Нетер показала, что отсюда следуют механические законы сохранения импульса mv и момента импульса mv2. Что касается закона сохранения кинетической энергии mv2/2, то он является следствием равномерности хода часов абсолютного времени.
Попытку объяснить свойство инерции предпринял Э. Мах, связав его с влиянием далеких звезд. Но это было объяснение ad hoc: речь шла о мгновенном воздействии на межзвездных расстояниях.
При всей своей загадочности инерция имела совершенно ясную количественную меру — массу. Со времен Ньютона ее принято рассматривать как основную характеристику материи. Напомним, что, согласно Аристотелю, материя не поддается количественному описанию, т. к. представляет собой изменчивую и текучую субстанцию, а по Декарту материя — это протяженный континуум, заполняющий все пространство и доступный математическому описанию. Существовала и еще одна точка зрения на сущность материи, которую отстаивал противник Декарта и сторонник материалистического сенсуализма П. Гассенди: материя состоит из атомов, обладающих свойствами неделимости, неизменности, тяжести и разделенных бестелесной пустотой. Близкую позицию занимал и Хр. Гюйгенс, который утверждал, что материя, состоящая из атомов, и пространство разделены, а действия на расстоянии быть не может.
физическая модель мироздания, построенная в рамках механистического мировоззрения, явилась плодом свободного творения человеческого разума. Это была превосходная материалистическая модель, позволяющая решать большое количество практических задач, включая освоение космического пространства, и в наше время.
| Философия квантовой теории
Квантовая механика предсказывает не события, а их вероятности. Эйнштейн заметил по этому поводу, что он не верит, будто Бог играет в кости. Смысл кван-товомеханических предсказаний многим представлялся смутным. Р. Фейнман заявил в своей Нобелевской лекции: «Мне кажется, я смело могу заявить, что квантовой механики никто не понимает».
Рассмотрим основные варианты интерпретации смысла квантовомеханических расчетов. Наиболее распространенным является подход, предложенный Ниль-сом Бором и Максом Борном и получивший название Копенгагенской интерпретации. Разъясняя смысл этого подхода, Борн писал: «природа не может быть описана с помощью частиц или волн в отдельности, а только с помощью более сложной математической теории. Этой теорией является квантовая механика, которая заменяет собой обе эти модели и только с определенными ограничениями представляет ту или иную из них».
В мире квантовых явлений мы имеем дело с закономерностями, не поддающимися детерминистическому анализу. Существенно новой чертой исследования этих явлений оказывается фундаментальное различие между макроскопическим измерительным прибором и микроскопическими изучаемыми объектами. Работу приборов приходится описывать на языке классической физики, не вводя кванта действия. В силу этих причин, если в классике взаимодействием между прибором и объектом можно пренебречь, то в квантовой физике оно составляет неотъемлемую часть самого явления. Эта осо- G19 бенность приводит к тому, что повторение одного и того же опыта дает, вообще говоря, разные результаты, которые, следовательно, могут выражаться в форме вероятностных (статистических) закономерностей.
Обобщая этот отказ от классического идеала детерминизма, Бор сформулировал его в виде принципа дополнительности. Количественное выражение этот принцип находит, по его словам, в форме соотношений неопределенности Гейзенберга (4), (5), которые фиксируют границы применимости к квантовым объектам кинематических и динамических переменных, заимствованных из классической физики. Развивая свои мысли о принципе дополнительности, Бор отметил, что он может быть применен также и при анализе процессов социокультурой динамики.
Второй подход к интерпретации квантовой механики называют неоклассическим. Сторонники этого подхода (Д. Бом и др.) полагают, что классический принцип причинности можно сохранить, если ввести в теорию некие скрытые неизвестные пока параметры. Однако этот подход непродуктивен, т. к. никому из его защитников не удалось раскрыть природу этих скрытых параметров.
Статистическую интерпретацию отстаивал Д.И. Бло-хинцев, который обратил внимание на тот факт, что объектом применения квантовой механики по существу являются не отдельные частицы, а квантовый ансамбль. А поэтому поведение микрочастиц определяется совокупностью статистических закономерностей.
В 1957 г. X. Эверетт предложил наиболее парадоксальную интерпретацию, которая получила название многомировой. Его идея вызвала крайне противоречивую реакцию в научном сообществе, многие ее решительно отвергли как абсурдную, но некоторые ее приняли, поскольку не увидели конкурентоспособных альтернатив.
Известен квантово-механический парадокс, связанный с наблюдением интерференционной картины, возникающей при происхождении пучка электронов или светового луча (т. е. пучка фотонов) через пару узких щелей. Парадокс состоит в том, что интерференционная картина возникает даже в том случае, когда на щель падает один электрон или один фотон. С точки зрения стандартной квантовой теории, это должно означать, что фотон расщепляется на две части, одна из которых проходит сквозь одну щель, а другая через вторую, после чего обе части интерферируют на экране. Этого однако не может быть, потому, что фотон — это минимальная порция, квант электомагнитного излучения (см. формулу 3).
Чтобы снять этот парадокс, Эверетт предложил гипотезу, согласно которой, кроме реальной Вселенной, в которой мы живем, параллельно существует множество ее двойников — «теневых» Вселенных. Эти двойники, в которых обитают и бесчисленные дублеры уважаемых читателей, никак не проявляют себя. За одним исключением: при прохождении «нашего» электрона сквозь «наши» щели он взаимодействует со своим «теневым» партнером, снимая тем самым парадокс, от которого у физиков болит голова. То же самое происходит при всех других квантовых событиях.
Природа реальности, гласит гипотеза Эверетта, состоит в том, что помимо нашего мира — параллельно с ним существует множество его двойников, причем число этих двойников увеличивается с каждой наносекундой. Д. Дойч, посвятивший обоснованию этих идей книгу «Природа реальности», предложил назвать этот непрерывно ветвящийся мир Мультиверсом (Multiverse от английского слова Universe, Вселенная). Смысл этой гипотезы он комментирует следующим образом: кто такие «мы ?», пока я пишу эти строки, множество «теневых» Дойчей делают то же самое и не одна копия этих Дойчей не занимает в Мультиверсе привилегированного положения. Между собой Дойчи — двойники никак не взаимодействуют, а потому нам никогда не узнать, разделяют ли они взгляды «нашего» Дойча на проблему реальности. Именно этот более чем странный мир описывает, по его словам, квантовая механика.
«Это не бред сивой кобылы, — говорит по этому поводу патриарх отечественной физики академик В.Л. Гинзбург. — Но я лично в это не верю, хотя есть серьезные ученые, которые верят».
Значительно более простую и понятную интерпретацию парадоксов квантовой механики можно предложить, используя методологию торсионной физики. Если фотон — квант электромагнитного поля — представляет собой возмущенную под действием электрического заряда «нить» поляризованных фотонов, то при взаимодействии этой «нити» с материальным объектом — парой щелей — происходит ее расщепление, что и объясняет возникающее в итоге явление интерференции. Точно таким же образом можно объяснить и другой парадоксальный эффект — квантовую телепорта-цию, которая была предсказана Эйнштейном в его совместной работе с Розеном и Подольским и недавно осуществлена де Мартини (Рим) и Цайлингером (Вена).
Записав основное уравнение квантовой механики — волновое уравнение, — Шредингер не смог разъяснить непосредственный физический смысл волновой функции. Ответ на этот вопрос дает торсионная физика. Из теории физического вакуума Г.И. Шипова следует, что волновая функция определяется через реальное торсионное поле — поле кручения физического пространства. Источниками торсионного поля являются элементарные частицы, обладающие ненулевым спином, макроскопические тела — измерительные приборы, а также операторы, проводящие эксперимент с этой частицей. Однако, торсионные поля приборов и операторов при проведении эксперимента никак не контролируются, а потому вносят в его результат элемент случайности. Результат опыта с квантовым объектом зависит, таким образом, от взаимодействия торсионных полей, созданных тремя различными источниками, два из которых подчиняются законам случая. По этой причине результаты опытов носят вероятностно-статистический характер. Торсионная интерпретация квантовой механики значительно более наглядна, чем копенгагенская или неоклассическая, а тем более, чем «многомировая».
9 Философия теории относительности
Последние 40 лет своей жизни Эйнштейн потратил на то, чтобы понять мир материи как форму проявления пустого искривленного пространства-времени. Один из ведущих специалистов по космологии Дж. Уилер сформулировал эту мечту Эйнштейна в виде
[лава 2. Филоеопм научной картины мира
рабочей гипотезы: «материя есть возмущенное состояние динамической геометрии».
Основная категория относительности — это метрика, т. е. число, которое сопоставляется с двумя точками (событиями). Суть общей теории относительности и всей геометрической картины мира состоит в обобщении теории Евклида по двум направлениям — во-первых, по увеличению размерности, а во-вторых, по переходу к искривленным пространствам.
В 1916 г. на базе уравнений ОТО К. Шварцильд рассчитал метрику пространства —времени вокруг сферически симметричного материального объекта.
Этот расчет послужил основой последующего развития теории черных дыр — одного из наиболее интересных объектов современной космологии. Из-под гравитационного радиуса этих удивительных объектов не может выйти ничто — ни у света, ни у каких-либо других тел не хватит энергии, чтобы преодолеть силу притяжения черной дыры.
В 1921 г. Т. Калуца обобщил уравнения ОТО на случай пятимерной метрики.
Пятая координата оказалась замкнутой на планков-ском масштабе 10~43 см. Главным достижением теории Калуцы оказалась геометризация электромагнитного поля: его пятимерные уравнения содержали уравнения Максвелла.
В связи с увеличением размерности ОТО возникает вопрос, почему реальное пространство нашего мира подчиняется трехмерной геометрии Евклида. В 1919 г. эту проблему исследовал П. Эренфест. Все классические физические поля — гравитационное, кулоновское электрическое, магнитное, производимое магнитным зарядом, — убывают обратно пропорционально квадрату расстояния. В мирах более высокой размерности эти зависимости оказались бы совершенно иными и, как следствие, и атомы и планеты потеряли бы устойчивость.
Философский подход к проблемам топологии пространства развивался М.А. Марковым. Исходный тезис его рассуждений — в сопоставлении двух линий античной философии на проблему делимости материи — линии Демокрита, который был сторонником идеи неделимых атомов, и линии Эмпедокла, по мнению ко-
Раздел VII. Современна» научна» картина мира
торого число первоэлементов бесконечно велико. Марков предложил третью концепцию, альтернативную по его мнению двум классическим.
Концепция Маркова основана на двух принципиально новых идеях. Первая из них состоит в том, что структурные части материи могут строиться из элементов не меньшей, а большей массы: избыточная масса в соответствии с законом сохранения массы —энергии трансформируется в жесткое излучение. Заметим, что эту же идею использовал А.Е. Акимов в фитонной теории квантового вакуума.
Вторая идея — это так называемая «ядерная демократия»: способность элементарных частиц превращаться друг в друга, спонтанно исчезать и вновь возникать из вакуума. Классическая атомная теория не знала ничего подобного.
Используя эти идеи, Марков предложил представить элементарные частицы в виде почти замкнутых автономных вселенных, которые он назвал фридмона-ми. Из-за большого гравитационного дефекта масс полная масса замкнутой вселенной равна нулю. А если она замкнута не полностью, то ее масса может быть сколь угодно малой, например, равной массе элементарной частицы. С точки зрения внешнего наблюдателя эта малая масса будет заключена внутри сферы таких же микроскопических размеров, как и элементарная частица.
«Фридмон с его удивительными свойствами, — пишет академик Марков, — не является порождением поэтической фантазии — без всяких дополнительных гипотез система уравнений Эйнштейна —Максвелла содержит фридмонные решения... Вселенная в целом может оказаться микроскопической частицей. Микроскопическая частица может содержать в себе целую Вселенную».
Глава 3
ФИЛОСОФСКИЕ ПРОБЛЕМЫ СОВРЕМЕННОЙ НАУЧНОЙ КАРТИНЫ МИРА
| Универсальная теория Вселенной
По мнению С. Хокинга, в настоящее время на вопрос о том, может ли существовать единая теория всего реально существующего, следует дать три альтернативных ответа:
- Полная теория существует и когда-нибудь будет построена.
- Окончательной теории Вселенной нет, а есть бесконечный набор все более совершенных теорий.
- Такой теории не существует, имеется граница, за которой нельзя предсказать что-либо определенное. За этими рассуждениями Хокинга скрывается
неявный постулат, который состоит в том, что сам объект теоретизирования — Вселенная — в своих наиболее фундаментальных свойствах остается неизменным. Между тем, если вспомнить основные принципы нелинейной науки и рассматривать Вселенную как большую самоорганизующуюся систему, то можно прийти к выводу, что у нас нет достаточных оснований считать этот постулат истиной в последней инстанции.
Несмотря на эти сомнения, многие теоретики убеждены, что такая теория будет в конце концов создана. «Физика представляет собой единое целое, — пишет по этому поводу Р. Пенроуз, — и правильная квантовая теория гравитации, когда она, наконец, будет построена, должна стать основой нашего досконального понимания законов природы».
Полностью солидарен с ним и С. Хокинг, который утверждает, что «если мы действительно откроем полную теорию..., тогда все мы, философы, ученые и просто обычные люди, сможем принять участие в дискуссии о том, почему так произошло, что существуем мы и существует Вселенная. И если будет найден ответ на такой вопрос, это будет полным триумфом человеческого разума, ибо тогда нам станет понятным замысел Бога».
Теоретики продолжали упорно работать над этой проблемой. А. Салам и С. Вайнберг создали единую теорию слабых и электромагнитных взаимодействий. На очереди теория Великого объединения, которая будет описывать также и сильные взаимодействия, а о теории суперструн думают как о прообразе еще более общей теории — супергравитации. На этом пути, помимо больших теоретических трудностей, физиков идет еще одна тяжелая проблема — экспериментальная невесомость: предсказания теорий становится все труднее проверить на опыте.
Скорее всего, однако, до триумфа, о котором мечтают теоретики, еще далеко. К тому же есть много фундаментальных вопросов, на которые эта теория, даже если она будет создана, не может дать убедительных ответов.
Вселенная состоит из вещества — главным образом из протонов, электронов и нейтронов, — и антивещества, т. е. антипротонов и позитронов, имеющих противоположные электрические заряды. Ни теория относительности, ни квантовая механика не дают ответа, почему при происхождении Вселенной из вакуума возникла такая асимметрия.
Внести ясность в этот парадокс можно с помощью модели «фитонного моря». Согласно существующим космологическим моделям, когда закончилась самая ранняя инфляционная стадия расширения Вселенной, ее температура была очень высока— 1016 эВ. При
9 ПроОлема антивещества такой температуре в плазме должны были начаться процессы генерации частиц и античастиц, причем практически в равных количествах. Однако вследствие эффекта аннигиляции они должны были сразу же превращаться в фитонные ансамбли, что сопровождалось испусканием жесткого излучения.
Анализируя протекание этих процессов, А.Д. Сахаров предположил, что скорости рождения частиц и античастиц должны немного различаться, а процессы разбаланса их концентрации должны протекать быстрее, чем их взаимная аннигиляция.
Достаточно, таким образом, предположить, что в силу неких нелинейных эффектов процесс генерации материи шел с небольшим переносом в пользу вещества, и тогда в итоге часть вещества осталась «невостребованной» и составила материальную основу всех ныне существующих объектов во Вселенной, а другая, причем подавляющая часть, вместе со всем антивеществом оказалась «связанной» в форме фитонов.
Что касается жестких гамма-квантов, испущенных при формировании фитонного «моря», то они сохранились к настоящему времени в форме реликтового излучения с температурой 3 °К, открытого А. Пензиасом и Р. Вильсоном. Количество этих реликтовых фотонов в миллиард раз превосходит суммарную численность протонов, из которых состоят все материальные объекты во Вселенной. Этот факт — прямое подтверждение того, что в момент своего рождения концентрации частиц и античастиц различались весьма мало, разница между ними составляла порядка Ю-9 в пользу вещества. Именно из этих «избыточных» протонов и электронов и развились позднее галактики, звезды и планеты, включая те, на которых затем зародилась жизнь.
■ Будущее Вселенной
Стандартная фридмановская модель предсказывает два варианта конца современной Вселенной — либо «тепловая смерть» в результате непрерывного расширения, либо последующее сжатие (Big Crush — Большой Хлопок). Согласно теории, первому сценарию соответствует средняя плотность материи меньше, чем 10_29r/CM3i второму— больше этой величины. По данным астрофизики, современные оценки плотности как раз дают 10~29г/см3, поэтому выбор между обоими эволюционными сценариями, оба из которых «хуже», остается как будто неопределенным.
Однако наблюдения над аномалиями в движении звезд и галактик привели астрономов к выводу, что, кроме видимого вещества, во Вселенной должна существовать недоступная прямым наблюдениям темная материя, содержание которой намного превосходит количество вещества. Вопрос о природе этой материи неясен. Возможно, это холодный межзвездный газ, белые карлики, нейтрино или другие странные частицы.
Отличный от стандартных прогнозов взгляд на будущее Вселенной можно получить, используя идеи нелинейной науки. Факт рождения Вселенной из вакуума означает, что ее нельзя рассматривать как замкнутую систему и, следовательно, ее эволюция подчиняется закономерностям теории самоорганизующихся систем. И следовательно теория Всего, о которой мечтают физики, должна включать динамическую неустойчивость. А это означает, по мнению И.Р. Пригожина, что по мере того, как Вселенная эволюционирует, обстоятельства создают новые закономерности.
Одно из таких нестандартных обстоятельств — возможность рождения дочерних вселенных. Исходный постулат этой гипотезы состоит в том, что существует пространственно-временная пена — квантовые флуктации на уровне планковских масштабов. Существование этой пены можно проверить экспериментально, наблюдая реакцию на нее мощных гамма-квантов с энергией порядка 1016ГэВ, излучаемых ядрами галактик или квазарами. Если зоны такой пены существуют, то становится возможным спонтанное рождение обособленных пространственно-временных областей, гравитационно отделенных от Вселенной-матери. Наблюдать их можно по мощным вспышкам излучения, идущего «ниоткуда».
Возможен индукционный механизм возникновения таких областей вследствие столкновения двух частиц сверхвысокой энергии (файербол).