Тонкоструктурные спектры и электронно-колебательные взаимодействия сопряженных молекул цепочечного строения

Вид материалаАвтореферат

Содержание


Таблица 2. Параметры FC- и HT- взаимодействий в молекулах ДСБ и FДСБ.
В пятой главе
Шестая глава
Подобный материал:
1   2   3

Таблица 2. Параметры FC- и HT- взаимодействий в молекулах ДСБ и FДСБ.

Частота, см-1

а/2

α

ДСБ

FДСБ

ДСБ

FДСБ

ДСБ

FДСБ

102 (90)




0,43




0,08




132

130 (135)

0,19

0,73

-0,09

0,02

152 (153)

154

0,75

0,45

-0,08

-0,35

183 (172)




0,485




-0,005




(205)

211 (211)

0,36

0,595

0,26

-0,0,45

263 (292)




0,43




0,19




337 (336)




0,545




0,185




(366)




0,355




0,255




(389)




0,375




0,275




(536)




0,4




0,3







(600)




0,19




0,09

650 (641)

696 (696)

0,43

0,375

0,18

0,095

794

750 (750)

0,2

0,18

-0,1

0,04

852 (869)




0,435




0,035




887




0,18




-0,08




1008 (996)

985 (989)

0.36

0,245

-0.03

-0,075




1021 (1011)




0.31




-0.14

1188 (1181)

1182

0.49

0.295

-0.04

-0.195

1209

1201

0.245

0.365

-0.145

-0.125

1252 (1265)

1250 (1249)

0.405

0.53

-0.035

-0.02

(1330)

1333 (1323)

0.285

0.39

0.185

-0.22

1450

(1454)

0.285

0.275

-0.185

0.175

1485

(1486)

0.35

0.17

-0.02

0.07

1570

1566

0.375

0.555

0.035

-0.315

1545

1540 (1540)

0.41

0.51

0.03

-0.41

1600

1600 (1600)

0.62

0.58

-0.11

-0.13

1635

1638 (1643)

0.295

0.715

-0.195

-0.125

Примечание. В скобках приведены частоты колебаний возбужденного состояния

при следующих параметрах: ширины БФЛ для обоих соединений равны 20 см-1, ширины ФК – 120 см-1, величина фактора Дебая-Валлера равна 0.15. Таким образом, стало ясно, что фон, на котором проявляются вибронные пики обусловлен именно интенсивными ФК, а не неоднородным уширением.

Был проведен расчет параметров внутримолекулярного взаимодействия для 11 нормальных колебаний молекул СБ и 5-ти нормальных колебаний молекулы ДФБ, 33-ти нормальных колебаний молекулы ДСБ и 25-ти — для молекулы FДСБ (таблица 2). Число нормальных колебаний у молекул этой группы соединений существенно больше, чем у «жестких» молекул, в спектрах которых проявляется не более 10-ти нормальных колебаний [17-19], причем в большинстве случаев расчет параметров показывает, что та или иная полоса в вибронном спектре «жесткой» молекулы проявляется только за счет FC- или НТ- взаимодействий. То, что для молекулы ДФБ параметры были рассчитаны только для пяти нормальных колебаний объясняется тем, что для анализа используется только спектр флуоресценции.

Достоверность полученных величин FC- и НТ- параметров подтверждается расчетом относительных интенсивностей полос, соответствующих обертонам и комбинациям нормальных колебаний.

В сопряженных спектрах исследуемых молекул практически для всех нормальных колебаний превалирует FC-взаимодействие, но влиянием НТ-взаимодействия на формирование спектров пренебрегать, как это делают авторы [20], для молекул дифенилполиенов, нельзя. Незеркальность между сопряженными спектрами этой группы соединений обусловлена интерференцией FC- и НТ-взаимодействий.

В пятой главе приведены обзор литературных данных по фото-физическим свойствам и результаты исследования сопряженных спектров соединений второй группы, молекулы которых являются замещенными или производными от молекул соединений первой группы. Все соединения этой группы впервые синтезированы.

Сопряженные спектры флуоресценции и возбуждения флуоресценции замещенных полиенов и дифенилполиенов с числом двойных связей в цепи n = 2 или n = 3 (заместители — NO2, N(CH3)2, NH2, CN) были измерены в «жестких» парафиновых матрицах при 4.2 К.

Тонкая колебательная структура в спектрах возбуждения флуоресценции как и в спектрах флуоресценции всех замещенных дифенилбутадиенов, в отличие от дифенилбутадиена проявляется от полосы чисто электронного перехода до  3500 - 4000 см-1.

В этих условиях в сопряженных спектрах соединений 10, 13 и 14 содержащих разнотипные заместители, наблюдается значительный сдвиг в низкочастотную область по сравнению с аналогичными спектрами дифенилбутадиена (~8000 см 1). Такой сдвиг спектров может быть объяснен эффектом сопряжения заместителей с различными электронно-донорными N(CH3)2 и электронно-акцепторными NH2 свойствами. А в сопряженных спектрах соединений 8, 9, имеющих только один электронно-донорный заместитель, этот сдвиг гораздо меньше (~2200 см-1 для 8, ~3500 см-1 для 9). Спектры флуоресценции и возбуждения флуоресценции соединения 12, содержащего в параположении молекулы электронно-акцепторный заместитель NO2, испытывают аналогичный сдвиг ~2500 см-1 по сравнению со спектрами 1,6-дифенилгексатриена-1,3,5.

Следовательно, влияние заместителей на спектральные свойства соединений 8, 9, 12 меньше, чем у соединений 10, 13 и 14. В спектрах замещенных гексатриена с разнотипными заместителями, но без донорно-акцепторного взаимодействия наблюдалось значительно меньшее длинноволновое смещение по сравнению с данными спектров ДФГ, чем у 10, 13 и 14.

Наибольший квантовый выход флуоресценции в молекуле 10 по сравнению с квантовыми выходами соединений 8,9,12 может быть также обусловлен сильным электронным донорно–акцепторным взаимодействием.

Спектры соединений 9 и 8 отличаются от спектров 10 и 12 значительно более ярко выраженной колебательной структурой. Полоса чисто электронного 0-0 перехода молекулы 8 по сравнению с молекулой 9 смещена в коротковолновую область примерно на 1300 см-1, что, по всей видимости, связано с заменой заместителя N(CH3)2 в молекуле 9 на NH2 в молекуле 8.

Сильное донорно-акцепторное взаимодействие в молекуле диена (соединение 13) ослабляется в триене (соединение 14), и спектр триена приобретает черты спектра полиенового соединения. Это подтверждается также данными КР.

Можно сделать вывод, что наиболее длинноволновый электронный переход в молекуле триена в отличие от диена локализован главным образом на полиеновой цепи. Эти выводы соответствуют также данным спектра РКР триена. При возбуждении в области длинноволнового электронного перехода молекулы триена (450515 нм) резко возрастает интенсивность линии полносимметричного колебания С=С связи 1540 см-1.

Исследование спектральных свойств впервые синтезированных кросс-сопряженных кетонов значительно усложняет плохая растворимость этих соединений в н-парафинах. Далеко не для всех соединений с кето-группой в структуре молекулы удалось зарегистрировать тонкоструктурные спектры.

Спектральные исследования соединений 15-17 (полиеновых бис-,-диметиламинокетонов) показывают, что даже небольшие изменения в структуре приводят к значительным отличиям в их спектральных свойствах. Молекула соединения 15 имеющая в своей структуре четыре двойных связи симметрична относительно центральной кетогруппы, в молекуле соединения 16 при том же числе двойных связей эта симметрия нарушена. Структура





Рисунок 6. Спектры флуоресценции (слева) и возбуждения флуоресценции (справа) соединения 15 в н-октане при 4,2 К.


молекулы соединения 17 отличается от 15 наличием центрального шестичленного цикла. Это приводит к тому , что сопряженные спектры соединения 15 в октане при 4,2 К квазилинейчатые, а спектры соединения 16 и 17 – широкополосные, что еще раз подтверждает необходимость «удобного» встраивания молекулы примеси в матрицу растворителя.

Между спектрами флуоресценции и возбуждения флуоресценции соединения 15 в н-октане при 4,2 К наблюдается очень сильное отклонение от зеркальной симметрии как по распределению интенсивности, так и по колебательным частотам. В спектре возбуждения флуоресценции происходит наложение двух спектров: нормального, полосы которого имеют аналоги в спектре флуоресценции, и «аномального», не имеющего соответствующего спектра флуоресценции.

Для объяснения этой аномалии в спектре возбуждения флуоресценции мы применили модель двухъямного адиабатического потенциала по некоторой внутримолекулярной координате в возбужденном состоянии. В этом случае спектр возбуждения флуоресценции можно разделить на две компоненты. Одна из них «нормальная». К ней относятся полосы, у которых наблюдаются обертоны и, главное, имеются аналоги в спектре флуоресценции. Она обусловлена обычным одноямным потенциалом. Вторая – «аномальная» компонента спектра связана с проявлением двухъямного адиабатического потенциала. Полоса 926 см-1 расположенная в этой области, вероятно, соответствует ангармонической колебательной моде двухъямного потенциала. В «аномальной» части спектра расположены полосы, не имеющие аналогов в спектре флуоресценции, например с частотой 589 см-1. Причем её отсутствие нельзя объяснить интерференцией франк-кондоновского и герцберг-теллеровского взаимодействий, как это можно сделать для полос 513 и 785 см-1 в спектре флуоресценции. Спектр возбуждения флуоресценции сильно ангармоничен. Согласно теории предложенной И.С. Осадько [14,15], адиабатический потенциал моделируется выражением U(x) = -2 (cosX -  cos 2X - sin X), где X – координата, вдоль которой потенциал имеет два минимума, параметр  – передает общую глубину потенциала,  – высоту барьера,  – ассиметрию потенциала. Были подобраны значения параметров  и . При =600 и ==0 получается простой одноямный адиабатический потенциал основного состояния. При значениях параметров =600, =0,37 и =0,1 вычисленный спектр примерно совпадает с экспериментальным. За базисную (нормировочную) линию взята частота 926 см-1.

В соединениях 23-25 образуется внутримолекулярная водородная связь. Сопряженные спектры со слабо выраженной тонкой структурой получены для соединений 23 и 25. Введение в структуру молекулы соединения 23 вместо одной двойной связи с электронно-донорным заместителем N(CH3)2 метилпиррольного цикла приводит к большему разрешению колебательной структуры, но и к увеличению интенсивности сплошного фона. Измерение относительной интенсивности вибронных полос по этим спектрам невозможно. У соединения 24 в растворе н-октана, молекула которого является структурной частью как 23, так и 25 сопряженные спектры широкополосные, практически бесструктурные.

Сильное нарушение зеркальной симметрии наблюдается в сопряженных спектрах растворов соединения 26 в октане при низких температурах. В то время как в спектре флуоресценции проявляется тонкая структура, спектр возбуждения флуоресценции состоит из широких, бесструктурных полос. Эта особенность сопряженных спектров с вполне приемлемой точностью укладывается в рамки теории двухямных потенциалов в основном и возбужденном состояниях Адиабатические потенциалы основного (= 3800; = 0.40; = -0.05) и возбужденного (= 1900; = 0.75; = 0.10) состояний, соответствующие наилучшему согласию с экспериментальными спектрами [21].

Изменение в структуре молекул 29-32 практически не влияют на спектральные свойства. Сопряженные спектры этих соединений при 77 К широкополосные и практически зеркально симметричные. Спектры соединений 29-31 состоят их трех полос, шириной 350-400 см-1 и лежат в одной области. Наименее структурны спектры соединения 32 в которых проявляются только две полосы. Замена одного из метилпиррольных циклов в молекулах 29 и 30 приводит к длинноволновому смещению сопряженных спектров на  500 см-1.

Шестая глава посвящена исследованию тонкоструктурных спектров соединений цепочечного строения, молекулы которых состоят из пятичленных гетероциклов (третья группа соединений). Исследование спектрально-люминесцентных свойств таких соединений при низких температурах в жестких матрицах ранее не проводилось.

Результаты исследований спектров пятизвенных цепочечных молекул свидетельствуют о том, что степень разрешенности вибронной структуры спектров флуоресценции и возбуждения флуоресценции чувствительны к концентрации их растворов и температуры охлаждения. Наилучшее разрешение удается достигнуть при 4,2 К для наиболее разбавленных растворов (C  10-6 М/л).

Измерены спектры флуоресценции и возбуждения флуоресценции впервые синтезированных соединений, состояших из трех гетероциклов 33-36 в н-гексане а также соединения 37 (РОР) при 77 и 4,2 К. У всех соединений 33-37 тонкая структура в сопряженных спектрах проявляется на интенсивном фоне. Наличие в растворе нескольких конформеров исследуемых соединений, спектры которых налагаются друг на друга, делает невозможным анализ полученных спектров. Для соединений 33-36 наблюдалась зависимость спектров флуоресценции от возб, а спектров возбуждения флуоресценции - от рег. Такие зависимости для сопряженных спектров РОР не обнаружены. Это согласуется с тем, что молекула РОР не может иметь конформеров при компланарности молекулы в целом. Спектр флуоресценции РОР как положению полос, так и по распределению интенсивности в них близок к соответствующему спектру соединения соединения 33 (РОО). Практически совпадают у них положения чисто электронного перехода (полосы 0-0). Для РОР 0-0=29464 см-1, а для РОО 0-0=29427 см-1. Следовательно, замена фенильного кольца на оксазольный цикл в молекуле соединения 33 мало изменяет положение низкоэнергетического возбужденного электронного состояния.

Самой интенсивной полосой в сопряженных спектрах является резонансная полоса, соответствующая чисто электронному переходу (полоса 0-0). Сопоставление спектров соедиений 38 (РОРОР) и 39 (PDPDP) показывает, что у соединения с оксадиазольными звеньями спектры смещены на 40 нм в более коротковолновую сторону по сравнению со спектрами соединения с оксазольными звеньями.

В отличие от люминофоров РОРОР и PDРDP, спектральные свойства недавно впервые синтезированных соединений 40 и 41 (PDFDP и XDFDX, соответственно) до настоящей работы практически не были изучены. Замена центрального Р-звена на цикл F в молекуле PDРDP приводит к батохромному смещению полосы поглощения на 8 нм и еще большему смещению полосы флуоресценции на 16 нм. Введение по две метильные группы в каждое из концевых Р-колец вызывает дополнительное батохромное смещение.

Колебания со значениями частот диапазонов 990-1010 и 1600-1622 см-1 проявляются в спектрах многих производных бензола. Их принято относить к валентным колебаниям бензольного кольца. Колебания с частотами 1176-1196 и 1442-1459 см-1 принято считать характеристичными для сжатия-растяжения одинарных С–С связей между звеньями молекулы. Колебания с частотами 952-961см-1 и 1514-1523 см-1 являются, по-видимому, характеристичными для пятичленных гетероциклов. В молекуле PDFDP эти частоты не проявляются, в то время как в молекуле XDFDX есть достаточно интенсивные вибронные полосы: в спектре возбуждения флуоресценции, соответствующая нормальному колебанию с частотой 930 см-1, и в спектре флуоресценции — с частотой 1523 см-1. В вибронных спектрах всех четырех молекул – PDFDP, XDFDX, РОРОР и PDPDP – присутствуют полосы с частотами 1621-1633 см-1. Замена центрального бензольного цикла в молекуле PDPDP на фурановый в молекулах PDFDP и XDFDX приводит к некоторому изменению частот, как в спектрах КР, так и сопряженных спектрах люминесценции. Так, при этом колебания с частотами 983, 1013, 1113 и 1276 см-1, проявляющиеся в спектрах КР PDFDP, не удается зарегистрировать в спектрах флуоресценции этого соединения, а в сопряженных спектрах XDFDX они проявляются.

Как было показано, для всех соединений, состоящих из пяти гетероциклов тонкая структура в сопряженных спектрах проявляется на интенсивном фоне. Поэтому невозможно по экспериментальным спектрам измерить интенсивности вибронных полос.

Было проведено моделирование спектров с помощью методики, описанной в главе 2. Моделированные спектры практически совпали с экспериментальными.

Такое совпадение получено при следующих параметрах: ширины БФЛ (ГБФЛ): POPOP – 20 см-1, PDPDP – 25 см-1, PDFDP – 40 см-1, XDFDX – 35 см-1; ширины ФК (ГФК): 300 см-1 для POPOP и PDPDP, 414 см-1 для PDFDP и 420 см-1 для XDFDX; фактора Дебая-Валлера (): 0.16 для PDFDP, 0.2 для POPOP, PDPDP и XDFDX. Значение ГБФЛ для всех исследованных молекул этих соединений не превышает 40 см-1, фактор Дебая-Валлера - 0,2. Видно, что ширина БФЛ при моделировании, а, следовательно, неоднородное уширение, у соединений в структуре которых имеются только фенильные циклы в 1,5-2,0 раза меньше, чем у соединений, в молекулах которых центральный цикл – фурановый. Оптимизированные значения ГБФЛ и ГФК свидетельствуют, что довольно интенсивный фон, на котором проявляются вибронные пики, обусловлен именно наложением ФК, а не существующим неоднородным уширением. Большая ширина и значительная интенсивность фононных крыльев свидетельствует о сильном электрон-фононном взаимодействии примесных молекул исследованных соединений с окружающей средой.