От возрождения до канта

Вид материалаУчебное пособие

Содержание


Глава 5. НАУЧНАЯ РЕВОЛЮЦИЯ
De Revolutionibus
Формирование нового типа знания, требующего союза науки и техники
Ученые и ремесленники
Новая «форма знания» и новая «фигура ученого»
Оформление научного инструментария и его использования
Подобный материал:
1   2   3   4   5   6   7   8   9   10   ...   32

Глава 5. НАУЧНАЯ РЕВОЛЮЦИЯ

Общая характеристика


Отрезок времени примерно от даты публикации работы Николая Коперника «Об обращениях небесных сфер» ( De Revolutionibus), т. е. с 1543 г., до деятельности Исаака Ньютона, сочинение которого «Математические начала натуральной философии» впервые опубликовано в 1687 г., обычно называют периодом «научной революции». Речь идет о мощном движении, которое обретает в XVII в. характерные черты в работах Галилея, идеях Бэкона и Декарта и которое впоследствии получит свое завершение в классическом ньютоновском образе Вселенной, подобной часовому механизму.

Все началось с астрономической революции Коперника, Тиха Браге, Кеплера и Галилея — наиболее выдающихся ее представителей. Значительное влияние их на «классическую физику» Ньютона очевидно. Шаг за шагом меняется образ мира, с трудом, но неуклонно разрушаются столпы космологии Аристотеля—Птолемея. Коперник помещает в центр мира вместо Земли Солнце; Тихо Браге — идей-; ный противник Коперника — устраняет материальные сферы, которые, по старой космологии, вовлекали в свое движение планеты, а идею материального круга (или сферы) заменяет современной идеей орбиты; Кеплер предлагает математическую систематизацию открытий Коперника и завершает революционный переход от теории кругового движения планет («естественного» или «совершенного» в старой космологии) к теории эллиптического движения; Галилей показывает ошибочность различения физики земной и физики небесной, доказывая, что Луна имеет ту же природу, что и Земля, и формулирует принцип инерции; Ньютон в своей теории гравитации объединяет физику Галилея и физику Кеплера: действительно, с позиций механики можно сказать, что теории Галилея и Кеплера уже очень близки к отдельным результатам, полученным Ньютоном. Однако за те сто пятьдесят лет, которые отделяют Коперника от Ньютона, меняется не только образ мира. С этим изменением связано и изменение — также медленное, мучительное, но неуклонное —

Общая характеристика 147

Общая характеристика 151

действительно является результатом долгого и мучительного процесса, в котором взаимодействовали неоплатоническая мистика, герметическая традиция, магия, алхимия и астрология. Научная революция мало похожа на триумфальное шествие. И когда вычленяются и исследуются ее «рациональные» направления, следует постоянно помнить о ее возможных мистических, магических, герметических и оккультных ответвлениях.

Формирование нового типа знания, требующего союза науки и техники


В результате «научной революции» родился новый образ мира, с новыми религиозными и антропологическими проблемами. Вместе с тем возник новый образ науки — развивающейся автономно, социальной и доступной контролю. Чтобы это понять, следует изучить такие его компоненты, как герметическая традиция, алхимия, астрология и магия. Отвергнутые современной наукой, они, плохо ли, хорошо ли, — участвовали в ее зарождении как минимум на первых этапах ее развития.

Другая фундаментальная характеристика научной революции — формирование знания, которое, в отличие от предшествующего, средневекового, объединяет теорию и практику, науку и технику, создавая новый тип ученого: не средневекового философа, не гуманиста, не мага, астролога или даже ремесленника или художника Возрождения. Этот новый тип ученого, рожденный научной революцией, — больше не маг или астролог, владеющий частным знанием посвященных, и не университетский профессор, комментатор и интерпретатор текстов прошлого, это ученый нового типа, т. е. носитель того типа знания, который для обретения силы нуждается в постоянном контроле со стороны практики, опыта.

Научная революция порождает современного ученого-экспериментатора, сила которого — в эксперименте, становящемся все более строгим благодаря новым измерительным приборам, все более и более точным. Деятельность ученого нового типа часто протекает вне (а то направлена и против) старых структур знания, например университетов. «В XVI и XVII вв. университеты и монастыри уже более не являются, как это было в средневековье, единственными центрами культуры. Инженер или архитектор, проектирующий каналы, плотины, укрепительные сооружения, занимает равное или даже более

152 Научная революция

престижное положение, чем врач, придворный астроном, профессор университета.

Общественная роль художников, ремесленников, ученых разного типа в этот период существенным образом меняется» (Паоло Росси). Прежде «свободные искусства» (интеллектуальный труд) отличались от «механических искусств». Последние считались «низкими», «презренными», предполагали использование ручного труда и контакт с материалом; их приравнивали к рабскому ручному труду. «Механические искусства» считались недостойными свободного человека. Но в ходе научной революции это противопоставление ослабевает: опыт нового ученого заключается в эксперименте, а эксперимент требует операций и измерений. Таким образом, новое знание опирается на союз теории и практики, который часто получает развитие в кооперации ученых, с одной стороны, и техников и мастеров высшего разряда (инженеров, художников, гидравликов, архитекторов и т. д.) — с другой. Все та же идея экспериментального знания, доступного общественному контролю, меняет и статус «механических искусств».

Ученые и ремесленники


Некоторые исследователи (например, Е. Зильсел) считают, что в XVI в. с развитием техники начала рушиться стена, которая со времен античности отделяла «свободные искусства» от «механических». Знание, социальное по характеру, зародилось поначалу среди специалистов (навигаторов, инженеров—создателей фортификационных сооружений, техников — мастеров пушечного дела, землемеров, архитекторов, художников и др.) и лишь затем стало «свободным искусством».

Контакт или, скорее, встреча знания научного и технического, ученого и ремесленника — факт научной революции. Но важна форма этого контакта. Были ли сами ремесленники инициаторами внедрения нового типа знания в среду тех, кто занимался «свободными искусствами»? Или общество — зарождающийся класс буржуазии — придало статус знания опыту специалистов высшего разряда? Вряд ли правы те, кто считает, что они вполне прояснили вопрос, охарактеризовав как «буржуа» любого человека, занимающегося интеллектуальным трудом, которому выпало жить в период времени, отделяющий Уильяма Оккама от Альберта Эйнштейна.

Общая характеристика 153

154 Научная революция

отдаленные предметы, был известен, но почему получается так, оптики понять не могли, не преуспел в этом и Галилей. Удалось это лишь Кеплеру: именно он понял законы функционирования линз. И не техники или рабочие, которые рыли колодцы, поняли, почему вода в насосах не поднималась выше 34 футов. Понадобился интеллект Торричелли, который сумел объяснить, что максимальная высота водяного столба в цилиндре 34 фута (10,36 м) связана с давлением атмосферы на поверхность колодца. А сколько навигаторов-практиков билось над объяснением природы приливов и отливов? И лишь Ньютон создал теорию приливов (начало ей положено Кеплером; Галилей же дал явлению объяснение ошибочное).

Итак, мы познакомились с двумя противоположными точками зрения на факт сближения техники и науки, ремесленника и ученого — явление, типичное для научной революции. Это сближение, даже можно сказать — слияние техники с познанием, составляет суть современной науки. Наука, базирующаяся на эксперименте, требует для проверки теории проведения испытаний с применением ручного труда и инструментов — знания, соединенного с технологией. Науку создали ученые. Но развивается она благодаря технологической базе, машинам и инструментам, которые составили естественную основу испытаний и вскрыли новые глубокие и перспективные проблемы. Не техники арсенала подсказали Галилею законы динамики, так же как не животноводы дали в руки Дарвину теорию эволюции, хотя Дарвин не раз беседовал с животноводами, а Галилей посещал арсенал. И это не безразличный для наших размышлений факт. Техник — это тот, кто знает что и часто знает как. Но лишь ученый знает почему. Пример из наших дней: электрик знает множество вещей о практике применения электрического тока и знает, как сделать электропроводку, но знает ли электрик, почему электрический ток действует именно так, а не иначе, знает ли что-либо о природе света?

Новая «форма знания» и новая «фигура ученого»


«Широкое поле для размышлений, — пишет Галилей в «Беседах о двух новых науках», — предоставляет наблюдательному уму практика в вашем знаменитом арсенале, господа венецианцы, и особенно в том, что касается механики; каждый инструмент и механизм постоянно используют разные мастера, среди которых... есть очень опытные и умнейшие люди». «Очень опытные и умнейшие люди»

Общая характеристика ]55

156 Научная революция

а часто и вопреки университетам. И, однако, несмотря на этот разрыв, нельзя забывать о том, что связывало научную революцию с прошлым. Речь идет об обращении к авторам и текстам, актуальным для новой культурной перспективы: Евклиду, Архимеду, Витрувию, Герону и др.

Оформление научного инструментария и его использования


Тесная связь теории и практики, науки и техники порождает еще один очевидный феномен научной революции — быстрый рост и совершенствование инструментария (компаса, весов, механических часов, астролябий, печей и т. д.), типичного для предшествующих эпох: в XVII в. происходит «как бы неожиданно быстрая их модернизация» (Паоло Росси). В начале XVI в. весь инструментарий сводился к немногим предметам, связанным с астрономическими наблюдениями и топографическими открытиями, а в механике применялись рычаги и блоки. Теперь же, всего лишь за несколько десятилетий, появляются телескоп Галилея (1610); микроскоп Мальпиги (1660), Гука (1665) и ван Левенгука; циклоидальный маятник Гюйгенса (1673); в 1638 г. Кастелли дал описание воздушного термометра Галилея; в 1632 г. — водяного термометра Жана Рея, и в 1666 г. Магалотти изобретает спиртовый термометр; в 1643 г. появляется барометр Торричелли; в 1660 г. Роберт Бойль дает описание пневматического насоса.

Но более интересно в истории идей не просто перечисление инструментов (его можно продолжить), а то, что в ходе научной революции инструменты, предназначенные для опытов, становятся неотъемлемой частью научного знания. Не знание и рядом с ним — инструменты. Инструмент неразделен с теорий; он сам становится теорией. В рукописных заметках члена академии Чименто (Флоренция) Винченцо Вивиани читаем: «Спросить у Гонфиа (искусный стеклодув), какая из жидкостей наиболее подходяща для жара, т. е. для получения высокой температуры среды». Ниже мы узнаем о мужестве Галилея, которому удалось внедрить в науку, несмотря на многочисленные препоны, приспособление «презренных механиков» — подзорную трубу и использовать ее для научных целей, хотя вначале она служила целям практическим, в частности военным. Ньютон во введении к первому изданию «Начал» восстает против различия между «рациональной механикой» и «механикой практической», которое проводилось «древними».

Общая характеристика 157

158 Научная революция

та — исказителя исследуемого объекта, в связи с чем возникает вопрос о возможности контроля. Гук оценил опыты Ньютона с призмой, отмечая их точность и изящество, но он отверг гипотезу о том, что белый цвет может иметь сложную природу, — во всяком случае, как единственно справедливую. Гук считал, что цвет не является исходной принадлежностью лучей. По его мнению, белый цвет — продукт движения частиц, проходящих через призму. А это означает, что рассеивание цветов — результат искажения, образуемого призмой. Теперь мы бы сказали, что «призма анализирует, поскольку модулирует» (С. Д'Агостино).

Итак, в ходе научной революции инструменты вторгаются в науку; научная революция санкционирует существование научных инструментов. Часть инструментов воспринимается как простые усилители возможностей наших чувств. Но одновременно с этим возникают другие проблемы: инструмента, противоположного чувствам, и инструмента — исказителя исследуемого объекта. Эти две последние проблемы при дальнейшем развитии физики возникнут вновь.