Лекции по дисциплине «Вычислительные системы, сети и телекоммуникации». Часть I (весенний семестр)
Вид материала | Лекции |
СодержаниеПервый советский персональный компьютер. Первое поколение Первое направление Вторая сфера Третье направление В общем случае, можно предложить следующую классификацию |
- Учебно-методический комплекс по дисциплине вычислительные системы, сети и телекоммуникации, 287.7kb.
- Учебно-методический комплекс дисциплины вычислительные системы, сети и телекоммуникации, 338.43kb.
- Учебно-методический комплекс по дисциплине вычислительные системы, сети и телекоммуникации, 610.87kb.
- Программа дисциплины Вычислительные системы и телекоммуникации для направления 080700., 173.01kb.
- Курс Vсеместры 10 (весенний) лекции 16 часов Экзамен 10 семестр (весенний), 44.95kb.
- Балльно-рейтинговая система по дисциплине «Вычислительные системы, сети и телекоммуникации», 29.7kb.
- Рабочая программа дисциплины «вычислительные системы, сети и телекоммуникации» Рекомендуется, 176kb.
- Темы курсовых работ по дисциплине «Сети и системы телекоммуникаций» для студентов нп2,, 11.23kb.
- Федеральное агентство по образованию, 931.35kb.
- Курс Vсеместры 9 (осенний), 10 (весенний) лекции 66 часов Экзамен 10 семестр (весенний), 40.04kb.
Лекции по дисциплине
«Вычислительные системы, сети и телекоммуникации».
Часть I (весенний семестр)
Лекция №1
Содержание:
1.1. Введение.
1.2. Предмет и содержание курса, взаимосвязь курса со смежными дисциплинами. Учебный план, контроль знаний. Список литературы для самостоятельной работы.
1.3. Место и роль вычислительной техники в информатике.
1.4. Краткая история развития ЭВМ.
1.5. Поколения ЭВМ.
1.6. Основные области и формы использования ЭВМ.
1.7. Классификация средств вычислительной техники. Характеристика семейств ЭВМ. Понятие о супер-ЭВМ, мини- и микроЭВМ, персональном компьютере.
1.1. Введение.
1.2. Предмет и содержание курса, взаимосвязь курса со смежными дисциплинами.
Учебный план: еженедельные практические занятия, раз в две недели лекции.
Контроль знаний: еженедельно проверка отчетов по практическим занятиям. В конце курса зачет.
Курсом предусмотрено: написание реферата, презентация иллюстрирующая сложные темы курса.
Список рекомендуемой литературы:
Основная литература:
Ефимов И.Е. Микроэлектроника. - М.: Высшая школа, 1995.
Королев А.Ю. Экономическая информатика и вычислительная техника. М.: Финансы и статистика, 1990.
Макарова Н.В. Информатика - М.: Финансы и статистика, 1997.
Назаров С.В. Компьютерные технологии обработки информации. - М.: Финансы и статистика, 1995.
Пятибратов А.Р. ВМ системы и сети. - М.: Финансы и статистика, 1997
Руководство программиста по Visual Basic для Microsoft office 97.- Microsoft Press 1998.
Сергеев Д.Е. Архитектура ЭВМ. - М.: Высшая школа, 1997.
Стефан А. Томас, Сью Пламли. Создание Intranet сети в Windows NT 4.- Киев: BHV, 1997.
Дополнительная литература:
Учебный курс "Компьютерные сети" - Microsoft Press, 1998. Ю.
Учебный курс "Поддержка Windows NT 4.0"" - Microsoft Press, 1998.
Учебный курс "TCP/IP и Internet" - Microsoft Press, 1998.
В современной системе подготовки инженера-экономиста приоритетным требованием становится формирование информационного мировоззрения в области экономики и управления, которое способствует установлению нового вида профессионально-информационной культуры. Теоретической основой этого вида культуры специалиста являются знания в области информатики и вычислительной техники, позволяющие сформировать устойчивые умения и навыки работы с компьютером при использовании информационных технологий в различных отраслях экономики. Курс "Вычислительные машины, сети и системы телекоммуникаций" является одной из важнейших составных частей такой подготовки. Целью преподавания дисциплины "Вычислительные машины, сети и системы телекоммуникаций" является: - формирование профессиональной информационной культуры; - создание фундаментальной теоретической базы в области новых информационных технологий обработки экономической информации на ПЭВМ; - формирование устойчивых умений и навыков инструментального использования аппаратных и программных средств ПЭВМ.
Основными задачами дисциплины являются :
1. формирование теоретических знаний в области информатики;
2. приобретение знаний принципов построения и организацию функционирования современных вычислительных машин, систем и сетей, их функциональную и структурную организацию, технико-эксплуатационные показатели средств вычислительной техники; знать принципы программного управления ЭВМ и элементы программирования на машинно-ориентированном языке типа 'Ассемблер';
3. выработка умения оценивать технико-эксплуатационные возможности средств вычислительной техники при обработке экономической информации и эффективность различных режимов работы ЭВМ и вычислительных систем; обосновывать выбор технических средств для систем обработки данных.
Содержание программы дисциплины "Вычислительные машины, сети и системы телекоммуникаций" должно определять базовую подготовку студентов инженерно-экономического профиля в процессе формирования устойчивых знаний и практических навыков использования ПЭВМ в дальнейшей учебной и научной деятельности при изучении предметных областей инженерного и экономического направления.
1.3. Место и роль вычислительной техники в информатике.
Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли. Области применения ЭВМ непрерывно расширяются. Этому в значительной степени способствует распространение персональных компьютеров. В настоящее время даже не специалисты по вычислительной технике понимают необходимость освоения принципов построения и применения ЭВМ.
Сегодня трудно, даже невозможно представить себе такую область человеческой деятельности, где бы не использовались компьютеры, или, как их еще называют, ЭВМ- электронно-вычислительные машины. Компьютер рассчитывает конструкцию космического корабля, управляет его полетом. Компьютер предсказывает погоду. Для этого ему приходится обрабатывать массу информации, получаемой как на Земле, так и из космоса- с искусственных спутников Земли. Компьютер помогает проектировать новые автомобили, самолеты, заводы. Компьютер на животноводческой ферме помогает выбрать наилучший состав корма и определить его порции, управляет температурой, влажностью и освещением теплиц. Компьютер рассчитывает заработную плату, которую получают родители. Компьютер используется даже в кино. С его помощью можно нарисовать что угодно, потом продемонстрировать, и зритель никогда не догадается о том, что этого на самом деле нет.
Конечно, возможности компьютера не безграничны. Больше того, он делает только то, чему его научил человек. А научен компьютер уже многому. Во всяком случае человек, вооруженный компьютером, может творить такие чудеса, которые и не снились Аладдину с его волшебной лампой. С компьютером можно просто поиграть. Он заменяет целый зал игровых автоматов, так как позволяет играть не в одну, а во множество разных игр. Компьютер помогает историкам восстанавливать и расшифровывать древние рукописи, написанные на пергаменте, бересте или глиняных табличках.
Компьютеры продают авиационные и железнодорожные билеты, мгновенно сообщая кассирам в разных частях города и даже в разных городах, на какой самолёт или поезд есть свободные места.
Компьютеру нашлось место и в школе, техникуме, институте. Он может заменить химическую лабораторию, наглядно показав на экране, что будет, если соединить какие-нибудь вещества. С его помощью легко продемонстрировать, как работает паровой двигатель или как взлетает ракета. Он облегчит изучение иностранного языка. Компьютер поможет составить список всех книг в библиотеке (такой список называется каталогом) и мгновенно отыскать в нём все книги любого автора или на любую тему.
Использование ЭВМ позволило в последние годы создать новый метод получения изображения внутренних частей непрозрачных тел. Этот метод называется томографией. Он позволяет получать изображение гораздо лучшего качества, чем рентгеноскопия.
Поручая компьютерам механическую, рутинную работу, мы освобождаем человека для творческой деятельности. Для того чтобы ЭВМ могли решать нужные задачи, люди должны постоянно передавать компьютерам свои знания в виде точной информации, строгих правил, безошибочных алгоритмов и эффективных программ. Вот почему знание основ информатики и вычислительной техники, понимание их роли в жизни общества, деятельности людей становятся элементом человеческой культуры, составной частью общего образования, учебным предметом.
1.4. Краткая история развития ЭВМ.
Говоря об истории вычислительной техники, многие начинают с изобретения абака и счет. Считать их вычислительными машинами можно с таким же основанием, что и пальцы на руках. Поэтому говорить о них встатье не будем.
Первый в мире эскизный рисунок тринадцатиразрядного десятичного
суммирующего устройства на основе колес с десятью зубцами принадлежит
Леонардо да Винчи. Он был сделан в одном из его дневников.
1614 г. Изобретение логарифмов шотландцем Джоном Непером. Вначале были составлены таблицы логарифмов, а затем, после смерти Непера, была изобретена логарифмическая линейка.
В 1623 г. через 100 с лишним лет после смерти Леонардо да Винчи немецкий ученый Вильгельм Шиккард предложил свое решение на базе шестиразрядного десятичного вычислителя, состоявшего также из зубчатых колес, рассчитанного на выполнение сложения, вычитания, а также табличного умножения и деления. Оба изобретения остались на бумаге и были обнаружены уже в наше время.
1642 г. Первым реально осуществленным и ставшим известным механическим цифровым вычислительным устройством стала "Паскалина", созданная французским ученым Блезом Паскалем. Это было шести- или восьмиразрядное устройство на зубчатых колесах, способное суммировать и вычитать десятичные числа.
1673 г. Через 30 лет после "Паскалины" появился "арифметический прибор" Готфрида Вильгельма Лейбница - двенадцатиразрядное десятичное устройство для выполнения арифметических операций, включая умножение и деление. В дополнение к зубчатым колесам для выполнения двух последних операций использовался ступенчатый валик.
Конец XVIII века. Жозеф Жакар создает ткацкий станок с программным управлением при помощи перфокарт. Гаспар де Прони разрабатывает новую технологию вычислений в три этапа: разработка численного метода, составление программы последовательности арифметических действий, проведение вычислений путем арифметических операций над числами в соответствии с составленной программой (!).
1830-1846 гг. Чарльз Беббидж разрабатывает проект Аналитической машины - механической универсальной цифровой вычислительной машины с программным управлением (!). Машина состоит из пяти устройств - арифметического устройства (АУ), запоминающего устройства (ЗУ), устройства управления (УУ), ввода и вывода (все как в первых ЭВМ, появившихся 100 лет спустя). АУ строилось на основе зубчатых колес, на них же предлагалось реализовать ЗУ (на тысячу 50-разрядных чисел -
итого 50 тыс. зубчатых колес). Для ввода программы и данных использовались перфокарты. Предполагаемая скорость вычислений: сложение и вычитание за 1 сек, умножение и деление - за 1 мин. Помимо арифметических операций, имелась команда условного перехода.
Были созданы отдельные узлы машины. Всю машину из-за ее громоздкости создать не удалось. В век расцвета пара об электричестве еще мало кто думал, поэтому вычислительная машина должна была приводиться в действие паровой машиной. Гениальную идею Беббиджа осуществил Говард Айкен, американский ученый, создавший в 1944 г. первую в США релейно-механическую вычислительную машину. Ее основные блоки - арифметики и памяти были исполнены на зубчатых колесах!
Ада Августа Байрон Кинг, графиня Лавлейс (1815-1852), - дочь Байрона составляла программы для решения задач на машине Беббиджа. Она также cоставила описание принципов ее работы.
1890 г. Американец Герман Холлерит построил статистический табулятор с целью ускорения обработки результатов переписи населения. Машина Холлерита имела большой успех, на её основе было создано преуспевающее предприятие, которое в 1924 году превратилась в фирму IBM.
1934 г. Немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать (в домашних условиях) цифровую вычислительную машину с программным управлением. Машина должна была работать с двоичными числами (впервые в мире). В 1937 г. машина Z1 (Цузе 1) заработала. Она могла обрабатывать 22-х разрядные двоичные числа с плавающей запятой, с памятью на 64 числа. Она работала полностью на механической (рычажной) основе.
В том же 1937 г., когда заработала первая в мире двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированной вычислительной машины, впервые в мире применив электронные лампы в количестве 300 штук.
1942-43 гг. В Англии при участии Алана Тьюринга была создана вычислительная машина "Колосс". В ней было уже 2000 электронных ламп. Машина предназначалась для расшифровки радиограмм германского Вермахта. Работы Цузе и Тьюринга были секретными. О них в то время знали немногие. Построенные машины не вызвали какого-либо резонанса в мире.
1943 г. Под руководством американца Говарда Айкена, по заказу и при поддержке фирмы IBM создан Mark-1 - первый программно-управляемый компьютер. Он был построен на электромеханических реле, а программа обработки данных вводилась с перфоленты.
Только в 1946 г., когда появилась информация об ЭВМ "ЭНИАК" (электронный цифровой интегратор и компьютер), созданной в США Д. Мочли и П. Эккертом, перспективность электронной техники стала очевидной (в машине использовалось 18 000 электронных ламп, и она выполняла около 3 000 операций в секунду). Однако машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти.
Завершающую точку в создании первых электронных вычислительных машин поставили в 1949-52 гг. ученые Англии, Советского Союза и США (Морис Уилкс, "ЭДСАК", 1949 г. Сергей Лебедев, МЭСМ, 1951 г., Джон Мочли и Преспер Эккерт, Джон фон Нейман "ЭДВАК", 1952 г.), создавшие ЭВМ с хранимой в памяти программой.
1958 г. Американец Джек Килби сконструировал первую интегральную схему.
7 апреля 1964 г. фирма IBM объявила о создании семейства компьютеров System-360. Это был важнейший шаг к унификации, совместимости и стандартизации компьютеров. В этом же году появился язык программирования BASIC.
1970 г. Швейцарец Никлас Вирт разработал язык программирования Паскаль, получивший впоследствии широкое распространение в обучении и программировании.
1971 г. Под руководством инженера фирмы Intel Теда Хоффа создан первый микропроцессор - 4-х разрядный 4004 или, как его назвали, - "компьютер в одном кристалле". Он состоял из 2250 транзисторов и выполнял все функции центрального процессора универсального компьютера.
1975 г. Студенты Пол Аллен и Билл Гейтс впервые использовали язык Бейсик для программного обеспечения персонального компьютера "Альтаир". Они же основали фирму Microsoft. Создан микропроцессор "МОП-технолоджи 6502", он состоял из 4300 транзисторов и широко использовался в персональных компьютерах того времени. Фирма IBM представила на рынок один из первых лазерных принтеров.
1977 г. В этом году в массовое производство были запущены три персональных компьютера: Apple-2 (Apple Computer) на базе процессора 6502, PET (Commodore) на базе процессора 8088, TRS-80 (Tendy Corporation) на базе процессора Z80.
1983 г. Фирма Apple Computer построила персональный компьютер Apple - первый компьютер, управляемый манипулятором "мышь". В этом же году началось массовое использование гибких дисков (дискет), как стандартных носителей информации.
1988 г. Основатель фирмы Apple Стив Джобс со своей новой фирмой Next Computer создали компьютер Next и операционную систему Next Step. Фирмой Philips разработан стандарт записи компакт-дисков CD-I (CD Interactiv).
1993 г. Фирма Intel представила микропроцессор Pentium. Фирма Siemens представила свой нейрокомпьютер , мощность которого эквивалентна 8000 рабочим станциям. Компьютер параллельно обрабатывал информацию от сети искусственных нейронов - идеальное решение для задач распознавания речи и изображений.
1995 г. Главным событием в мире программного обеспечения персональных компьютеров стало создание универсальной многозадачной операционной системы Windows 95. Выпущенная в сентябре 1995 года система Windows 95 стала первой графической операционной системой для компьютеров IBM PC. Впоследствии эта операционная система получила своё развитие в Windows 98. Фирма Microsoft в системе Windows 95 ввела новый стандарт самоустанавливающихся устройств (Plug And Play).
Первый советский персональный компьютер.
Любое упоминание о советских компьютерах вызывает у собеседника, знакомого с компьютерами не более 10 лет, усмешку: "А что, разве такие были?" Да, представьте себе, были. И не такие плохие, как это принято считать. Один из них носит гордый титул "первого советского персонального компьютера". Правда, "персональным" он по своей сути никогда не был - в Советском Союзе само слово "персональный" было не в чести. Поэтому ДВК, который в общем-то компьютером тоже никогда не назывался, официально считается просто первым советским диалоговым вычислительным комплексом (отсюда и сокращение ДВК), построенным на основе одноплатной ЭВМ. ДВК-1 был наследником ЭВМ "Электроника 60". Эта машина в конце 1970-х годов выпускалась в Воронеже и была по своей сути точной копией микроЭВМ PDP 11/34 компании Digital. Именно эта машина послужила прототипом нашего главного героя, передав ему все родовые черты DEC.
Процесс рождения первого советского компьютера был довольно сложен. Началось все с того, что на основе технологии объединения множества транзисторов в одном кристалле, использованной для создания однокристальной ЭВМ, был разработан уникальный (в том смысле, что не похожий ни на один из существующих за рубежом) 16-разрядный процессор К1801ВМ1. Это сравнительно небольшое устройство, размещенное в одном кристалле, по своим функциональным возможностям было полностью аналогично состоявшему из пяти БИС (больших интегральных схем)
процессору "Электроники 60". На основе К1801ВМ1, в свою очередь, была создана одноплатная ЭВМ, которая обладала всеми возможностями своей гораздо более объемной предшественницы. Размеры этой одноплатной микроЭВМ, получившей имя "Электроника МС 1201", составляли примерно 25x30x1,2 см, а ее масса не превышала 800 г. Сконструированную одноплатную ЭВМ втиснули в корпус того, что тогда называли дисплеем (не путать с монитором) - устройство управления монитором, имевшее вид системного блока desktop. На нем, собственно, и стоял монитор. К устройству подключалась клавиатура, а все вместе - к большой ЭВМ, находившейся в соседнем зале. Таким было индивидуальное рабочее место оператора ЭВМ. Оказалось, что в корпусе дисплея есть свободное пространство, куда помещалась одноплатная ЭВМ, и ее можно было легко соединить с дисплеем. Так получился ДВК-1.
Итак, ДВК-1, который сегодня бы мы называли не иначе, как персональным компьютером, появился на свет в 1982 году. Местом рождения первого советского ПК по праву считается Зеленоград. МикроЭВМ, составлявшая основу ДВК-1 и всех последующих моделей этого семейства, была построена по принципу закрытой архитектуры, т. е., в отличие от современных компьютеров, вынуть одно из ее устройств, заменить его другим или добавить новое было довольно сложно. Например, процессор зачастую просто припаивался на предназначенное для него место. Ведь конструкторы даже не могли предположить, что пользователь захочет его заменить. Альтернативы использовавшемуся процессору не было, плата была разработана под процессор одной марки. В случае поломки пользователь должен был обращаться к изготовителю. ПЗУ, правда, заменить было легко. Именно таким образом пользователи переориентировали компьютер для выполнения разных задач (!). Шестнадцатиразрядный процессор ДВК-1 поддерживал систему команд DEC (188 команд - на четыре меньше, чем в IBM PC). МикроЭВМ оснащалась 64 Кбайт оперативной памяти, но по техническим причинам процессор мог использовать только 52 Кбайт. Помимо СПЗУ (системное постоянное запоминающее устройство - аналог современного BIOS), первый советский ПК был оснащен ПЗУ с Бейсиком. Этот язык программирования позволял работать на компьютере в диалоговом режиме, решая
определенный круг задач. Для времени, когда появился ДВК-1, обходиться без жесткого диска было вполне естественно. Но отсутствие возможности работы с гибкими дисками
(и вообще с любыми накопителями) сделало первый советский компьютер довольно неудобным. Предполагалось, что для выполнения тех или иных специальных задач машину будут комплектовать пользовательскими ПЗУ. Цена ДВК-1, как и всех последующих моделей компьютеров этой серии, составляла от 8 до 24 тысяч рублей. Поскольку в то время самый дорогой советский автомобиль стоил 10 тысяч рублей (это, конечно, официальная гос. цена), понятно, почему это устройство никак нельзя назвать персональным.
Буквально сразу после появления ДВК-1 началась работа по совершенствованию этой машины. В рамках этой работы предполагалось, помимо прочего, построить в Зеленограде отдельный завод для производства компьютеров. Так началась история завода "Квант" - самого известного советского электронного предприятия. ДВК-2, массовое производство которого началось в 1984 году на заводе "Квант", был вполне полноценной машиной. В новой модели использовался усовершенствованный процессор К1801ВМ1, который позволял полностью адресовать все 64 Кбайт оперативной памяти. К этому времени был разработан российский накопитель на гибком магнитном диске (НГД): появилась возможность хранить и переносить информацию. Для того, чтобы его использовать, был разработан простейший 40-дорожечный контроллер внешнего НГД, вошедший в состав микроЭВМ. Впоследствии его сменил 80-дорожечный контроллер, позволяющий вести запись с удвоенной плотностью. Системный блок ДВК-2 в зависимости от использовавшихся накопителей на гибких дисках занимал один или два корпуса. Причем сами накопители оставались внешними устройствами. Вскоре была сконструирована новая машина, которая помещалась в корпус ДВК-2, но имела ряд функциональных отличий. Во-первых, блок управления дисплеем был заменен отдельной ячейкой в составе ЭВМ – цифровым дисплеем. Кроме того, совместно с МИЭТ (Московский институт электронной техники) была разработана ячейка графического дисплея. После всех этих преобразований появилась машина, в которой контроллер накопителя на гибком диске, а также графический и цифровой дисплеи были объединены на одной плате. Параллельно был налажен выпуск этой машины в виде моноблока. Такая модель ДВК выпускалась довольно долго.
Время шло, элементная база расширялась, размеры ЭВМ уменьшались. В результате на плате появилось свободное место, которое было заполнено контроллером накопителя на жестком диске, разработанном в Научном центре завода "Квант" в 1986-1987 годах. Одновременно с этим в Горьком (ныне Нижний Новгород) и Борисполе было налажено производство накопителей на жестких дисках, вошедших впоследствии в состав ДВК. При этом все компоненты удалось поместить в один корпус, правда, с большим трудом. Чуть позже Научный центр "Кванта" и МИЭТ разработали совмещенный контроллер графического и цифрового дисплея. В 1987-1988 годах появился новый процессор К1801ВМ3, который работал с 256 Кбайт или 1 Мбайт оперативной памяти. В результате всех преобразований оказалось, что помещенный в единый корпус компьютер не выдерживает температурный режим (проще говоря, перегревается), и в 1989 году появился новый корпус компьютера. В 1990 году на производственных мощностях завода "Квант" выпускалось около 4000 ДВК в месяц. В это же время в компьютер были внесены последние усовершенствования: уменьшены габариты корпуса, разработана системная плата, на которой помещалось все, что нужно для работы машины, были предусмотрены слоты расширения оперативной памяти, появилась ячейка, которая позволяла переходить на систему IBM-совместимых компьютеров. Однако в производство все эти улучшения не пошли. Несмотря на то, что
ДВК еще некоторое время продолжали производить, в 1991 году развитие этого модельного ряда, как, впрочем, и всей отечественной электронной промышленности, прекратилось. Главными причинами прекращения производства ДВК стали, наверное,
рыночные реформы и переход к капиталистической системе хозяйствования. В начале 90-х на российский рынок хлынул поток западной компьютерной техники. Советским ЭВМ было практически нереально выжить в этой неравной схватке. Хотя несмотря на то, что российский процессор уступал по производительности интеловскому i80286, использовавшемуся в компьютерах типа IBM PC/AT, в целом ДВК вполне соответствовал требованиям времени. Кроме того, компьютер был идеально защищен от вирусов за счет использования "закрытой" операционной системы. Серьезный удар по советским персональным компьютерам, как и по всей отечественной вычислительной технике, нанесло программное обеспечение. Вернее, полное его отсутствие. Похожие проблемы знакомы всем советским производителям компьютерной техники. Программное обеспечение - совершенно "не социалистический" товар. Его цену определяет рынок. Чем выше спрос, тем дороже программное обеспечение. Нет рынка – нет инструмента ценообразования. По крайней мере, в Советском Союзе такого инструмента не нашли. Каждая организация разрабатывала ПО для решения поставленных перед ней задач. Но за создание общего программного обеспечения - операционных систем и других пользовательских программ - разработчики брались крайне неохотно. Специально для компьютеров ДВК была написана операционная система ФОДОС, которая и названием, и своим внешним видом напоминала всем известный DOS. За всю историю компьютеров ДВК было разработано только две версии этой операционной системы. Компьютеры ДВК работают и сегодня. Большинство из них установлены в школах в качестве учебного пособия. Некоторые бывшие государственные предприятия, оснащенные в свое время советскими компьютерами, до сих пор продолжают их использовать.
1.5. Поколения ЭВМ.
Первое поколение (1945-1954) - компьютеры на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.
Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер. (Одно время слово "кибернетика" использовалось для обозначения вообще всей компьютерной науки, а в особенности тех ее направлений, которые в 60-е годы считались самыми перспективными: искусственного интеллекта и робототехники. Вот почему в научно-фантастических произведениях роботов нередко называют "киберами". А в 90-е годы это слово опять всплыло для обозначения новых понятий, связанных с глобальными компьютерными сетями - появились такие неологизмы, как "киберпространство", "кибермагазины" и даже "киберсекс".)
Во втором поколении компьютеров (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.
Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.
Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.
Наконец, в третьем поколении ЭВМ (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (то, что сейчас называют микросхемами). В это же время появляется полупроводниковая память, которая и по всей день используется в персональных компьютерах в качестве оперативной.
В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ.
Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.
Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой нашего с вами персонального компьютера.
Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.
К сожалению, дальше стройная картина смены поколений нарушается. Обычно считается, что период с 1975 по 1985 гг. принадлежит компьютерам четвертого поколения. Однако есть и другое мнение - многие полагают, что достижения этого периода не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров, и только с 1985 г., по их мнению, следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.
Так или иначе, очевидно, что начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.
И, конечно же, самое главное - что с начала 80-х, благодаря появлению персональных компьютеров, вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств последнего десятилетия - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" технике. Большие компьютеры и суперкомпьютеры, конечно же, отнюдь не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.
Особого упоминания заслуживает так называемое пятое поколение, программа разработки которого была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров "пятого поколения" не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется. ЭВМ пятого поколения реализованы на основе Фоннеймановских моделей "нейрокомпьтеров", что позволит приблизить обьем и скорость обработки информации в ЭВМ к обьемам и скорости обработки информации в мозге человека.
В недалеком будущем нас ждет появление квантовых компьютеров - ЭВМ шестого поколения. Разработка математического аппарата и архитектурных решений которых сейчас активно ведется.
1.6. Основные области и формы использования ЭВМ.
Академик В.М. Глушков указывал, что существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.
Первое направление является традиционным - применение ЭВМ для автоматизации вычислений. Научно-техническая революция во всех областях науки и техники постоянно выдвигает новые научные, инженерные, экономические задачи, которые требуют проведения крупномасштабных вычислений (задачи проектирования новых образцов техники, моделирования сложных процессов, атомная и космическая техника и др.). Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений.
Вторая сфера применения ЭВМ связана с использованием их в системах управления. Она родилась примерно в 60-е годы, когда ЭВМ стали интенсивно внедряться в контуры управления автоматических и автоматизированных систем. Математическая база этой новой сферы практически отсутствовала, в течение последующих 15-20 лет она была создана. Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки.
Сопряжение с каналами связи потребовало усложнения режимов работы ЭВМ, сделало их многопрограммными и многопользовательскими. Для исключения взаимных помех между программами пользователей в структуру машин были введены средства разграничения: блоки прерываний и приоритетов, блоки защиты и т.п. Для управления разнообразной периферией стали использоваться специальные процессоры ввода-вывода данных или каналы. Именно тогда и появился дисплей как средство оперативного человеко-машинного взаимодействия пользователя с ЭВМ.
Новой сфере работ в наибольшей степени отвечали мини-ЭВМ. Именно они стали использоваться для управления отраслями, предприятиями, корпорациями. Машины нового типа удовлетворяли следующим требованиям:
• были более дешевыми по сравнению с большими ЭВМ, обеспечивающими централизованную обработку данных;
• были более надежными, особенно при работе в контуре управления;
• обладали большой гибкостью и адаптируемостью настройки на конкретные условия функционирования;
• имели архитектурную прозрачность, т.е. структура и функции ЭВМ
были понятны пользователям.
Начало выпуска подобных ЭВМ связано с малыми управляющими машинами PDP фирмы DEC. Термин “мини-ЭВМ” появился в 1968 г. применительно к модели PDP-8. В настоящее время использование мини-ЭВМ сокращается. Исчезает и термин мини-ЭВМ. На смену им приходят ЭВМ других типов: серверы, обеспечивающие диспетчерские функции в сетях ЭВМ, средние ЭВМ или старшие модели персональных ЭВМ (ПЭВМ).
Одновременно со структурными изменениями ЭВМ происходило и качественное изменение характера вычислений. Доля чисто математических расчетов постоянно сокращалась, и в настоящее время она составляет около 10% от всех вычислительных работ. Машины все больше стали использоваться для новых видов обработки: текстов, графики, звука и др. Для работы в сетях передачи данных. В настоящее время широкую огласку получила всемирная компьютерная сеть InterNet.
Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точного результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много:
задачи робототехники, доказательства теорем, машинного перевода текстов с одного языка на другой, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. Для технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.
1.7. Классификация средств вычислительной техники.
В настоящее время в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящихся к различным поколениям, типам, классам, отличающихся своими областями применения, техническими характеристиками и вычислительными возможностями. Традиционно электронную вычислительную технику (ЭВТ) подразделяют на аналоговую и цифровую.
В аналоговых вычислительных машинах (АВМ) обрабатываемая информация представляется соответствующими значениями аналоговых величин:
тока, напряжения, угла поворота какого-то механизма и т.п. Эти машины обеспечивают приемлемое быстродействие, но не очень высокую точность вычислений (0.001-0.01). Распространены подобные машины не очень широко. Они используются в основном в проектных и научно-исследовательских учреждениях в составе различных стендов по отработке сложных образцов техники. По своему назначению их можно рассматривать как специализированные вычислительные машины.
В настоящее время под словом ЭВМ обычно понимают цифровые вычислительные машины, в которых информация кодируется двоичными кодами чисел. Именно эти машины благодаря универсальным возможностям и являются самой массовой вычислительной техникой.
Рынок современных компьютеров отличается разнообразием и динамизмом, каких еще не знала ни одна область человеческой деятельности. Каждый год стоимость вычислений сокращается примерно на 25-30%, стоимость хранения единицы информации - до 40%. Практически каждое десятилетие меняется поколение машин, каждые два года - основные типы микропроцессоров - СБИС, определяющих характеристики новых ЭВМ. Такие темпы сохраняются уже многие годы. То, что 10-15 лет назад считалось современной большой ЭВМ, в настоящее время является устаревшей техникой с очень скромными возможностями. Современный персональный компьютер с быстродействием в десятки и сотни миллионов операций в секунду становится доступным средством для массового пользователя.
В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. Например, в классификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые почти исчезли из обихода.
Вместе с тем существует целый ряд закономерностей развития вычислительной техники, которые позволяют предвидеть и предсказывать основные результаты этого поступательного движения. Необходимо анализировать традиционные и новые области применения ЭВМ, классы и типы используемых вычислительных средств, сложившуюся конъюнктуру рынка информационных технологий и его динамику, количество и качество вычислительной техники, выпускаемой признанными лидерами - производителями средств ЭВТ и т.д.
В общем случае, можно предложить следующую классификацию средств вычислительной техники, в основу которой положено их разделение по быстродействию.
• СуперЭВМ для решения крупномасштабных вычислительных задач, для обслуживания крупнейших информационных банков данных.
• Большие ЭВМ для комплектования ведомственных, территориальных и региональных вычислительных центров.
• Средние ЭВМ широкого назначения для управления сложными технологическими производственными процессами. ЭВМ этого типа могут использоваться и для управления распределенной обработкой информации в качестве сетевых серверов.
• Персональные и профессиональные ЭВМ, позволяющие удовлетворять индивидуальные потребности пользователей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня.
• Встраиваемые микропроцессоры, осуществляющие автоматизацию управления отдельными устройствами и механизмами.
Перечисленные типы ЭВМ, которые должны использоваться в индустриально развитых странах, образуют некое подобие пирамиды с определенным соотношением численности ЭВМ каждого слоя и набором их технических характеристик. Распределение вычислительных возможностей по слоям должно быть сбалансировано. Например, система обработки данных, используемая на Олимпийских играх в Атланте, содержала: 4 больших ЭВМ S/390,16 систем RS/6000, более 80 систем AS/400, более 7000 IBM PC, более 1000 лазерных принтеров, более 250 локальных сетей Token Ring и др. Многие ПЭВМ имели сопряжение с датчиками скорости, времени и т.д.
Требуемое количество суперЭВМ для отдельной развитой страны, такой, как Россия, должно составлять 100-200 шт., больших ЭВМ - тысячи, средних - десятки и сотни тысяч, ПЭВМ - миллионы, встраиваемых микроЭВМ -миллиарды. Все используемые ЭВМ различных классов образуют машинный парк страны, жизнедеятельность которого и его информационное насыщение определяют успехи информатизации общества и научно-технического прогресса страны. Формирование сбалансированного машинного парка является сложной политической, экономической и социальной проблемой, решение которой требует многомиллиардных инвестиций. Для этого должна быть разработана соответствующая структура: создание специальных производств (элементной базы ЭВМ, программного обеспечения и технических связей), смена поколений машин и технологий, изменение форм экономического и административного управления, создание новых рабочих мест и т.д.