Учебное пособие к курсовому проектированию по курcам «Сети эвм» и«Глобальные сети» Проектирование сети кампуса Москва 2003

Вид материалаУчебное пособие

Содержание


Схема линии
Рисунок 14 - Схема ГВС со средствами спутниковой связи
Sovam teleport
7. Порядок защиты
Кабельные системы локальных вычислительных сетей [3]
Кабели локальных вычислительных сетей
Максимальная длина сегмента
Количество узлов на сегменте
ВОЗМОЖНОСТЬ РАБОТЫ НА СКОРОСТЯХ ВЫШЕ 10Мbit/sec
Требования пожарной безопасности и применение кабелей
Основные эксплуатационные характеристики кабелей на витой паре.
Рекомендации по применению кабелей
Проблемы монтажа кабельных систем
Горизонтальная подсистема
Подобный материал:
1   2   3   4   5

6.3.2 Пример расчета энергетического баланса линии.


Схема линии:




Рисунок 13 – К примеру расчета энергетического баланса линии

Исходные данные:

Передатчик: мощность PTR= -6 дб/мвт; диаметр излучателя DTR=100мкм; апертура NATR=0,3;

Приемник: чувствительность PRSV=-39дб/мвт; диаметр приемника DTR=100мкм; апертура NATR=0,3; динамический диапазон PD=18 дб

Волокно 1: 50/125мкм; поглощение AttF1=3,5дб/км; длина L F1=3км; апертура NA F1=0,2;

Волокно 2: 62,5/125мкм; поглощение AttF2=3,5дб/км; длина L F2=2км; апертура NA F2=0,4;

Потери в каждом соединении LOSSc обычно составляют до1дб.

Потери из-за несогласованности диаметров D1,D2 LOSSД=20lg(D1/D2)

Потери из-за несогласованности апертур NA1,NA2 LOSSA=20lg(NA1/NA2)

Расчет.

Потери от передатчика до волокна 1:

LOSSTR-1= LOSSc+LOSSД+LOSSA=1+20lg(100/50)+20lg(0,3/0,2)=1+6+3,5=10,5дб.

Потери в волокне 1:

LOSS F1=Att F1* L F1=3,5*3=10,5дб.

Потери на соединении двух волокон (диаметры и апертуры согласованы):

LOSSF1-F2= LOSSc=1дб.

Потери в волокне 2:

LOSS F2=Att F2* L F2=3,5*2=7дб.

Потери от волокна 2 до приемника (диаметры и апертуры согласованы):

LOSSF2- RSV= LOSSc=1дб.

Итого потери = 10,5+10,5+1+7+1= 30дб.

Бюджет мощности = PTR- PRSV=-6-39=33дб

Запас бюджета мощности = 33-30=3дб.

Вывод: линия работоспособна, т.к. имеет достаточный запас бюджета мощности, величина которого меньше динамического диапазона приемника.

Если линия вносит настолько малые потери (короткая линия), что уровень сигнала на входе приемника не вписывается в его динамический диапазон (запас бюджета мощности превышает динамический диапазон минус 3-6дб), применяют оптические аттенюаторы с фиксированным или изменяемым уровнем затухания (путем, например, введения воздушного зазора между волокном и коннектором). В данном примере запас бюджета (3дб) меньше динамического диапаэона приемника (18дб), поэтому введения таких аттенюаторов не требуется.

6.3.3. Выбор услуг, предоставляемых глобальной вычислительной сетью

Выбор услуг, предоставляемых глобальной вычислительной сетью, выбор поставщика услуг глобальной вычислительной производится в соответствии с выбранной конфигурацией кампусной сети и для выполнения необходимых функций и состоит из следующих этапов:
  • Выбрать поставщика услуг (провайдера), ориентируясь на географическое местоположение, наличие предоставляемой выделенной линии и ее качество, предоставляемые услуги и их цены;
  • Разработать структурную схему средств выхода в Интернет;

Глобальные сети представляют собой специфические предприятия по производству (предоставлению) информационного сервиса - электронная почта, телеконференции, новости, биржевые сводки, доступ к сетевым архивам и базам данных и т.д.

Важнейшими компьютерными сетями, которые действуют или в рамках или образуют совместно с Internet мировое сетевое пространство, являются сети ARPANET, NSFNET, BITNET, EARN, USENET, EUnet, NASA Science Internet, FidoNet,Compu Serve, MCI, Mail, GLASNET и др.

Чтобы подключиться к серверам Internet, компьютер должен иметь выход в эту глобальную сеть через соответствующего поставщика услуг с использованием арендованного выделенного канала (например, спутникового, рисунок 14).



Рисунок 14 - Схема ГВС со средствами спутниковой связи

Для подключения компьютера к Internet потребуется поддержка протокола TCP/IP, сконфигурированного так, чтобы компьютер был узлом Internet. Другими словами, компьютер должен иметь Internet-адрес, достижимый для предполагаемых пользователей сервера.

В Российской Федерации действует примерно тридцать общедоступных компьютерных сетей, предоставляющих возможность IP соединения с Internet, в том числе Relcom, Совам Телепорт, SPRINT, , Glasnet, FREEnet, RUNNet. В таблице 8 приведен пример характеристик услуг глобальной сети, которые следует учитывать при выборе способа подключения к Internet.

Таблица 8 Характеристики услуг глобальной сети

Характеристики \ Типы ГВС

SOVAM TELEPORT

Коммуникационные услуги

ЭП, телекс, факс, создание WWW-серверов

Информационные услуги

Доступ к Internet, доступ к службе новостей Clarinet, конференции USENET и другие

Линии связи

Спутниковые, оптоволоконные, кабельные линии связи по frame relay, X.25, IP, ISDN.

Территориальное размещение элементов

Около 30 городов России и СНГ

Сопряжение с другими ВС

Доступ к другим ВС, российским и международным, осуществляется в московском узле через шлюзы

Тарифы ( на 14.04.98)

Подключение - 50 $
Абонентская плата - 35 $ в месяц
Почасовая плата (сверх 7 час. В месяц) - 1,5 $/ч.

Технические характеристики

Скорость передачи данных: (9.6 - 256) Кбит/с

Электронные коммерческие услуги

Банковские сети
S.W.I.F.T.
Банкоматы, верификация кредитных карточек

Для выбора поставщика услуг вычислительных сетей нужно составить аналогичную таблицу, поместив в ней характеристики 3 - 4 поставщиков услуг вычислительных сетей. Эти характеристики являются исходными данными для выбора поставщика услуг глобальных вычислительных сетей по одному из известных методов решения задачи выбора, аналогично задаче выбора конфигурации локальной вычислительной сети.

6.4. Расчет экономической эффективности от внедрения вычислительной сети [5]

6.4.1. Источники экономической эффективности

По оценке зарубежных специалистов в области автоматизации управления, автоматизация работы служащих в условиях промышленных предприятий может сократить общие расходы на конторскую деятельность примерно на 25%. Однако, наиболее важной целью автоматизации работы служащих является повышение качества административных решений (качество вырабатываемой информации).

Источниками экономической эффективности, возникающей от применения ЭВМ в организационном управлении, являются:
  • уменьшение затрат на обработку единицы информации;
  • повышение точности расчетов;
  • увеличение скорости выполнения вычислительных и печатных работ;
  • возможность моделирования изменения некоторых переменных и анализ результатов;
  • способность автоматически собирать, запоминать и накапливать разрозненные данные;
  • систематическое ведение баз данных;
  • уменьшение объемов хранимой информации и стоимости хранения данных;
  • стандартизация ведения документов;
  • существенное уменьшение времени поиска необходимых данных;
  • улучшение доступа к архивам данных;
  • возможность использования вычислительных сетей при обращении к базам данных

При анализе эффективности важно учитывать, что конечный эффект от применения ЭВМ связан не только с возмещением затрат на покупку, монтаж и эксплуатацию оборудования, а, в первую очередь, за счет дополнительного улучшения качества принимаемых решений.

Экономическая эффективность информационных процессов определяется соотношением затрат на технические средства и на заработную плату работников с результатами их деятельности. Известен ряд подходов к определению основных составляющих эффекта информационной деятельности. В основу этих понятий положены понятия информационной продукции (различные виды информации), информационного эффекта, величины предотвращения потерь, общественно необходимого уровня информированности и другие.

6.4.2. Расчет суммы затрат на разработку: внедрение и эксплуатацию вычислительной сети

Капитальные вложения при внедрении предлагаемой задачи или подсистемы рассчитываются в том случае, если внедрение задачи влечет за собой приобретение дополнительных технических средств. Таким образом, затраты на внедрение вычислительной сети должны рассчитываться по следующей формуле:

K = Као + Кпо + Кпл + Кмн +Кпп (1)

где

Као - стоимость аппаратного обеспечения ВС;
Кпо - стоимость программного обеспечения ВС;
Кпд - стоимость дополнительных площадей;
Кмн - единовременные затраты на наладку, монтаж и пуск ВС;
Кпп - предпроизводственные затраты (на научно- исследовательские, опытно- конструкторские работы подготовку и освоение производства).

Если новые технические средства не будут полностью загружены предлагаемой задачей или подсистемой, то капитальные затраты определяются с учетом коэффициента загрузки технических средств:

Кзад = К* r , (2)

где r - коэффициент загрузки технических средств предлагаемой задачей.

r = Тv / Тэфф.v , (3)

где

Тv - время решения задачи на v - м виде технических средств;
Тэфф.v - годовой эффективный фонд времени работы технических средств v-го вида.

Затраты на постановку задач, решаемых с использованием ВС, их программирование и внедрение определяются на основании экспертных оценок. В качестве экспертов выступают специалисты, создающие и эксплуатирующие информационные системы.

Эти затраты носят единовременный характер и при расчете эффективности учитываются вместе с дополнительными капитальными затратами.

Использование вычислительной сети требует дополнительных расходов на ее эксплуатацию и обслуживание. Затраты на расходные материалы при использовании ПЭВМ и периферийного оборудования (приобретение бумаги и ленты для принтера, гибких магнитных дисков, картриджей для заправки принтера и т.д.) по сравнению с затратами на расходные материалы при решении задач вручную, как свидетельствуют экспертные данные, даже увеличиваются приблизительно на 5 %.

Эксплуатационные расходы на вычислительную сеть определяются по следующей формуле [5]:

Рэ = Рзп + Ротч + Р накл + Ра.о + Рэл + Р рм + Роб + Раб , (4)

где Рэ - эксплуатационные расходы на ВС;
Рзп - расходы на суммарную заработную плату работников, обслуживающих ВС;
Ротч - расходы по отчислению из заработной платы в фонды социальной защиты;
Р накл - расходы по отчислениям из заработной платы на содержание АУП;
Ра.о - амортизационные отчисления;
Рэл - расходы на электроэнергию в год при использовании ВС;
Ррм - затраты на расходные материалы;
Роб - затраты на обучение пользователей использованию ВС;
Раб - абонентская плата поставщику услуг ВС (для глобальной сети).

Рзп = (Ор * Кур + Ор * Кдз) * m , (5),

где m- количество работников;

Ротч = Рзп * Отч (6)

Рнакл = Рзп * Накл (7)

Ра.о = Цоб * а / 100 (8)

Рэл рассчитывается для каждого вида оборудования отдельно и затем полученные результаты суммируются:

Рэл = N * Fд * Цэн, (9)

где Fд - действительный годовой фонд времени работы оборудования

Fд = D* T , (10)

где D-количество рабочих дней в году;
T - время работы оборудования в сутки;

Ррм = Цгд * n + Цп *m, (11)

где n и m - соответственно количество использованных расходных материалов.

Исходные данные для расчета затрат должны быть сведены в таблицу, пример которой приведен в таблице 9:

Таблица 9 Исходные данные для расчета затрат

N

Статья расхода

Сокращенное наименование

1

Оклад работника обслуживающего ВС

(Ор)

2

Региональный коэффициент

(Кур)

3

Коэффициент дополнительной зар. Платы

(Кдз)

4

Отчисления

(Отч)

5

Накладные расходы

(Накл)

6

Затраты на обучение персонала

Роб

7

Цена оборудования ВС и ПО

(Цоб)

8

Норма амортизации

(а)

9

Нормативный коэффициент эффективности

(Ен)

10

Стоимость гибкого диска

(Цгд)

11

Стоимость расходных материалов для принтера

(Цп)

12

Цена 1 Квт. Час электроэнергии

(Цэн)

13

Мощность ЭВМ

(Nэвм)

14

Мощность принтера

(Nпр)

15

Мощность UPS

(Nups)

16

Время работы ЭВМ в сутки M
10 ЭВМ
2 ЭВМ

(Tэвм)

17

Время работы принтера в сутки

(Tпр)

18

Время работы UPS в сутки

(Tups)

6.5. Выбор методики расчета экономической эффективности

Принимается решение об отрасли и условиях внедрения вычислительной сети. В зависимости от этого выбирается соответствующая методика.

Выбор базы для сравнения

Выбор базы зависит от того, какая задача ставится при расчете эффективности. Для этого анализируются в совокупности основные направления экономической эффективности информационных систем и схема их влияния на технико-экономические показатели. В данном курсовом проекте необходимо выполнить сравнение нескольких вариантов инженерных решений по расчетному коэффициенту эффективности капитальных вложений (Ер).

Ер = (Рэ1 - Рэ2) / К2 - К1; (12)

Рассматриваемые инженерные решения признаются эффективными при Ер>= Ен.

Для некоторых информационных систем изначально не преследуется цель сокращения рабочих мест, экономии средств, отводимых на трудовой процесс, а установка вычислительной сети проводится с целью повышения качества принимаемых решений, установки единого регламента проведения деловых процессов, повышения качества обслуживания клиентов, обеспечить коллективную работу служащих, работающих в территориально удаленных подразделениях, стремление превзойти конкурентов и так далее. В связи с этим вычисление показателей экономической эффективности не всегда представляется возможным, а эффект от установки вычислительной сети можно определить на качественном уровне. Практика показывает, что сети обеспечивают огромные преимущества предприятиям и организациям.

7. Порядок защиты

Защита проекта производится перед комиссией, назначаемой кафедрой.

Студент допускается к защите при условии наличия подписанной руководителем и студентом пояснительной записки и расчетно-графической части проекта.

Для защиты студенту отводится 8 -10 минут на изложение содержания работы; в процессе защиты комиссия высказывает свои замечания; выявляет ошибки проекта.

По результатам защиты (доклад, ответы на вопросы, качество проекта) выставляется оценка в ведомости и на титульном листе пояснительной записки. В случае выявления принципиальных ошибок проект возвращается на доработку.

После защиты студент должен сдать пояснительную записку руководителю проекта. В случае неудовлетворительной оценки назначается повторная защита с устранением всех ошибок проекта или с выдачей нового задания.

Литература

1. Богуславский Л.Б., Дрожжинов В.И. Основы построения вычислительных сетей для автоматизированных систем.-М.:Энергоатомиздат,1990.-256 с.:ил.
2. Microsoft Corporation. Компьютерные сети. Учебный курс /Пер. С анг. - М.: Издательский отдел "Русская редакция" ТОО "Channel Trading Ltd.". - 1997. - 697 с.: ил.
3. ссылка скрыта Проектирование кампусных сетей

7. Саати Т.Л. Математические модели конфликтных ситуаций. Пер.с англ. - М.: Сов. Радио, 1977. - 304 с.
8. Галатенко В.А. Информационная безопасность - основы / Системы Управления Базами Данных, N1, 1996, с. 6-28.

9. ссылка скрыта - Сайт проекта NetWizard

10 Ващенко Б.И. Методические указания к курсовому проектированию по курcам «Сети ЭВМ» и «Глобальные сети». Система автоматизированного проектирования компьютерной сети Netwizard. - МГТУ им. Н.Э.Баумана. Факультет “Информатика и системы управления”. Кафедра «Компьютерные системы и сети». – Москва, 2003.

11. Ващенко Б.И. Методические указания к курсовому проектированию по курcам «Сети ЭВМ» и «Глобальные сети». Проектирование сети кампуса. - МГТУ им. Н.Э.Баумана. Факультет “Информатика и системы управления”. Кафедра «Компьютерные системы и сети». – Москва, 2003. (настоящие методические указания)

12. Как построить кабельную систему для Вашей сети. s.spb.ru/public/aptros.pdf

13.Структурированные Кабельные Системы (СКС). ссылка скрыта

14. Обзор кабельной системы SISTIMAX. ссылка скрыта

15. Производители компьютерного и сетевого оборудования ссылка скрыта

16. Российские поставщики компьютерного и сетевого оборудования ссылка скрыта

17. Сайт компании Cisco Systems ссылка скрыта

18. Кульгин М. Технологии корпоративных сетей. Энциклопедия. - СПб: Издательство «Питер», 1999.

19. Фундамент информационной инфраструктуры. Сергей Орлов
Журнал ссылка скрыта #01/2003 rum.ru/nets/digest/fundiinf/fundiinf.shtml


Приложение 1



КАБЕЛЬНЫЕ СИСТЕМЫ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ [3]

.. Выбор кабельной подсистемы диктуется типом сети и выбранной топологией. Требуемые же по стандарту физические характеристики кабеля закладываются при его изготовлении, о чем и свидетельствуют нанесенные на кабель маркировки. В результате сегодня практически все сети проектируются на базе UTP и волоконно-оптических кабелей, коаксиальный кабель применяют лишь в исключительных случаях и то, как правило, при организации низкоскоростных стеков в монтажных шкафах.

В проекты локальных вычислительных сетей (стандартных) закладываются на сегодня всего три вида кабелей:
  • коаксиальный (двух типов):
    - тонкий коаксиальный кабель (thin coaxial cable);
    - толстый коаксиальный кабель (thick coaxial cable).
  • витая пара (двух основных типов):
    - неэкранированная витая пара (unshielded twisted pair - UTP);
    - экранированная витая пара (shielded twisted pair - STP).
  • волоконно-оптический кабель (двух типов):
    - многомодовый кабель (fiber optic cable multimode);
    - одномодовый кабель (fiber optic cable single mode).

И хотя общая номенклатура всех этих кабелей у многих производителей составляет даже не сотни, а тысячи наименований, выбирать кабель, как правило, приходится исходя не из характеристик конкретной марки, а из правил применения, что существенно облегчает жизнь проектировщику кабельной подсистемы ЛВС.

КАБЕЛИ ЛОКАЛЬНЫХ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ

При проектировании и монтаже ЛВС, как указывалось выше, в качестве стандартных систем передачи данных можно использовать довольно ограниченную номенклатуру кабелей: кабель с витыми парами (UTP-кабель) категорий 3, 4 или 5 с различными типами экранов или без них (STP - экранирование медной оплеткой, FTP - экранирование фольгой, SFTP - экранирование медной оплеткой и фольгой), тонкий коаксиальный кабель (RG-58) с разным исполнением центральной жилы (RG-58/U - сплошная медная жила, RG-58A/U - многожильный, RG-58C/U - специальное /военное/ исполнение кабеля RG-58A/U), толстый коаксиальный кабель (thick coaxial cable) и волоконно-оптический кабель (fiber optic cable single mode-одномодовый multimode-многомодовый). При этом каждый вид кабельной подсистемы накладывает те или иные ограничения на проект сети:

МАКСИМАЛЬНАЯ ДЛИНА СЕГМЕНТА

100 м

у кабеля с витыми парами

185 м

у тонкого коаксиального кабеля

500 м

у толстого коаксиального кабеля

1000 м

у многомодового (mm) оптоволоконного кабеля

2000 м

у одномодового (sm) оптоволоконного кабеля (с применением специальных средств до 40 - 70-90 км)

КОЛИЧЕСТВО УЗЛОВ НА СЕГМЕНТЕ

2

у кабеля с витыми парами

30

у тонкого коаксиального кабеля

100

у толстого коаксиального кабеля

2

у оптоволоконного кабеля

ВОЗМОЖНОСТЬ РАБОТЫ НА СКОРОСТЯХ ВЫШЕ 10Мbit/sec

Да

у кабеля с витыми парами и волоконно-оптического кабеля

Нет

у коаксиальных кабелей

ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ И ПРИМЕНЕНИЕ КАБЕЛЕЙ

Правила противопожарной безопасности делят кабели на две категории: общего применения и пленумные (разрешенные для прокладки в вентиляционных шахтах). Это деление осуществляется исходя из материалов, применяемых при изготовлении кабелей. Наиболее распространенные при изготовлении кабелей пластики на базе поливинилхлорида (PVC). При горении они выделяют ядовитые газы. По-этому PVC-кабели запрещены для прокладки в вентиляционных шахтах. В пленумных пространствах обычно применяются кабели с изоляцией на основе тефлона.

ОСНОВНЫЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ КАБЕЛЕЙ НА ВИТОЙ ПАРЕ.

Все кабели должны иметь витые пары проводов, применение кабелей с несвитыми попарно проводами не допускается. Это относится даже к коротким отрезкам плоского кабеля. При использовании экранированных кабелей на витой паре, сегменты последних рекомендуется заземлять на одном ( и только на одном! ) конце. На практике это удобнее производить на конце, подключенном к концентратору.
  • минимальный радиус изгиба - 5 см
  • температура при работе и хранении:
    -35...+60С - для кабеля в поливинилхлоридной оболочке
    -55...+200С - для кабеля в тефлоновой оболочке
  • температура при монтаже:
    -20...+60С - для кабеля в поливинилхлоридной оболочке
    -35...+200С - для кабеля в тефлоновой оболочке
  • относительная влажность:
    - 0...+100% - для кабеля в поливинилхлоридной оболочке, допускается случайная конденсация
    - не реагирует на влажность, конденсацию и водяные брызги - для кабеля в тефлоновой оболочке
  • возможность применения на открытом воздухе:
    - запрещено - для кабеля в поливинилхлоридной оболочке
    -  разрешено - для кабеля в тефлоновой оболочке
  • запрещено применение тонкого коаксиального кабеля для прокладки на открытом воздухе между двумя не связанными друг с другом зданиями (между зданиями, не имеющими общего контура заземления).

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ КАБЕЛЕЙ

При установке новой сети целесообразно применять кабель с витыми парами в рабочей группе. Оптоволоконные кабели - на длинных магистралях и для связи между зданиями. Тонкие коаксиальные кабели наиболее оправдано применять для организации низкоскоростых магистралей внутри монтажных шкафов (смотрите материал “Сложившаяся практика проектирования локальных сетей”). Кабели на витой паре и оптоволоконные кабели позволяют модернизировать сеть, переводя ее с 10 на 100 Mbit-ные технологии.

Наиболее “подвижной” частью любой ЛВС являются подсистемы рабочей группы. Добавление новых пользователей, перемещение рабочих мест и их аннулирование, повреждения кабеля в рамках рабочей группы происходят гораздо чаше, чем изменения в магистральных каналах. Именно поэтому UTP-кабели наиболее удобны для организации подсистем рабочих групп.

На длинных магистралях безусловно наиболее предпочтительно оптоволокно, ибо он обеспечивает наибольшую допустимую длину сегмента, высокую безопасность и помехозащищенность.

Чтобы не иметь проблем с кабельной подсистемой, при ее проектировании можно воспользоваться следующими правилами (рекомендации даны для применения UTP-кабелей):
  • если это сеть здания офисного типа (например, банк или собственно офисное здание), закладывайте один UTP кабель на каждые 3-4 кв.м. помещения. Рабочие места в зданиях такого типа подвержены наиболее частым переездам и очень плотному оснащению средствами вычислительной и оргтехники;
  • если это сеть обычной фирмы или предприятия, удвойте потребность в средствах вычислительной техники, которую заявил Вам Заказчик;
  • выполнив монтаж кабельной подсистемы, обязательно проведите ее сертификацию на соответствие требованиям 5-й категории (каждый линк и патч-корд). Даже если Вы применяли качественные компоненты, факторы монтажа и окружающих условий могли вызвать ухудшение рабочих характеристик. Распечатайте и сохраните результаты испытаний.

Соблюдение этих правил позволит избежать проблем с расширением кабельной сети при переходах на новые технологии как в рамках собственно ЛВС, так и в телефонных коммуникациях.

Для подсистем на базе тонких коаксиальных кабелей такие рекомендации выработать нельзя, т.к. в таких подсистемах необходимо стараться решить другую задачу - минимизировать количество рабочих мест. Вообще говоря, тонкий коаксиальный кабель не рекомендуется для сетей рабочей группы. Хотя проблема при его использовании заключается не собственно в кабеле. Дело в том, что проводка тонкого коаксиального кабеля выполняется открытой и пользователи имеют к ней доступ. Нередко пользователь некорректно отключает кабель, разрушая целостность кабельного сегмента. При этом выходит из строя вся сеть, может нарушиться работа сетевого программного обеспечения. К этим же последствиям приводит снятие терминатора с конца кабельного сегмента, применение отрезков кабеля с другим волновым сопротивлением. По этим причинам целесообразно применять тонкий коаксиальный кабель только в защищенных от несанкционированного доступа местах, например в монтажном шкафу. Кроме того, шинная топология сетей на тонком коаксиальном кабеле затрудняет диагностирование т.к. кабель является общим для множества узлов. Неисправность может быть вызвана любым узлом, любым отрезком кабеля или любым терминатором. Отыскать неисправность в таких сетях обычно довольно сложно.

ПРОБЛЕМЫ МОНТАЖА КАБЕЛЬНЫХ СИСТЕМ

В дополнение можно отметить, что управление сетью наиболее удобно на топологиях, поддерживаемых UTP-кабелем, а толстый коаксиальный кабель на наших территориях применяется настолько редко, что о возможности его применения проектировщики начинают забывать (хотя случаются ситуации, где его применение приводит к красивым техническим решениям). Наиболее подходящая область применения UTP-кабелей - кабельные подсистемы рабочей группы, горизонтальные подсистемы зданий и вертикальные подсистемы (при использовании STP-кабеля). Тонкий коаксиальный кабель целесообразно использовать для организации магистралей в монтажных шкафах, рабочих групп в помещениях с жесткой привязкой рабочих мест, низкоскоростных вертикальных кабельных подсистем. Оптоволоконный кабель - лучшее решение для организации скоростной среды передачи данных вертикальной подсистемы, магистрали между коммутационными узлами и между зданиями (административная и базовая подсистемы).

При монтаже любой кабельной подсистемы в любом здании приходится сталкиваться с огромным количеством проблем. Одна из причин - достаточно высокая (для того, чтобы создать проблемы) насыщенность зданий целой системой кабельных и проводных сетей: телефонные, телевизионные, системы пожарной и охранной сигнализации, локальные вычислительные сети компьютерных систем, системы электрообеспечения и т.п. кабельные коммуникации зачастую просто опутывают все помещения. Так называемые "интеллектуальные здания" у нас пока практически не строятся. Поэтому при проведении работ по монтажу компьютерных сетей в такого рода зданиях приходится решать следующие проблемы:
  • ранее установленные локальные сети независимы и, как правило, работают на граничных длинах кабельных коммуникаций;
  • обслуживающий персонал любой кабельной подсистемы здания (пожарной или компьютерной) считает свою подсистему главной и не принимает во внимания Ваши требования;
  • малейшие изменения в архитектуре любой сети (например компьютерной или сети электроснабжения) приводят к затратам не только на дополнительные материалы, но и на проведение изменений в действующей части;
  • заложенные при строительстве коммуникации полностью забиты как действующим, так и безхозным кабелем, но освободить их от неиспользуемых кабельных систем невозможно без повреждения работающих сетей, а использовать бесхозные нельзя из-за множественных повреждений.

Решить эти проблемы в комплексе возможно только в том случае, если требовать, чтобы кабельные системы служили длительные периоды времени не претерпевая кардинальных изменений, допуская при этом простое расширение. Но надо отдавать себе отчет в том, что это возможно лишь при капитальных затратах на внутренние кабельные системы здания. Километры кабеля, прибитого по плинтусам в коридорах здания - это не система связи, способная надежно просуществовать несколько лет. Строго говоря, для решения проблем связанных с кабельными коммуникациями, необходимо плотное сотрудничество с проектно-конструкторскими организациями, т.к. специалисты, выполняющие эти работы, не знают что такое компьютерная сеть, и СНИП-ов на проектирование кабельных подсистем ЛВС по-моему пока тоже не существует.

В мире несколько фирм специализируются на производстве так называемых структурированных систем монтажа. Наиболее известные из них AT&T с системой SYSTIMAX SCS, Digital - DEC Connect, AMP - NET Connect, а также Legrand, Panduit, Hubbell и др. предлагают такое количество готовых стандартных решений, такой набор кабельной фурнитуры, что проблем с монтажем и обслуживанием кабельного хозяйства, на мой взгляд, возникнуть не может. В состав структурированных кабельных систем входят специальные короба разного сечения для укладки кабеля, фурнитура крепления, розетки (компьютерные, телефонные, электропитания), монтажные шкафы, кроссировочные или патч-панели, заделанные на концах коаксиальные, UTP и волоконно-оптические кабели разной длины. При этом топология кабельной системы собирается только на кроссировочной панели, позволяя организовывать в пределах одной кросс-панели несколько различных топологий локальных сетей без изменения физической конфигурации кабелей.

При относительно высокой начальной стоимости структурированные кабельные системы оправдывают капиталовложения за счет:
  • длительного использования;
  • допускают одновременное использование разных протоколов и сред передачи данных;
  • модульности и возможности внесения изменений, а также наращивания мощности без влияния на существующие сети;
  • позволяет обеспечить одновременный и быстрый доступ ко всем системам, проложенным в кабельных каналах;
  • не зависят от поставщика сетевого оборудования;
  • являясь единой сетью, позволяют создавать независимые участки сети;
  • допускают использование ранее установленного оборудования;
  • не зависят от изменений в информационных технологиях;
  • обеспечивает зрительное восприятие разделения кабельных подсистем по функциональному признаку.

Структурированные кабельные системы - это реализация модульного представления о кабельных системах связи, рассматривающая последние в виде набора подсистем. Для того, чтобы проектирование проистекало менее болезненно, а, ГЛАВНОЕ, для того, чтобы в процессе эксплуатации было несложно модернизировать, расширить или даже перепрофилировать кабельную подсистему, ее желательно рассматривать в виде нескольких стандартизованных компонент - подсистем.

СКС выделяют три таких подсистемы: горизонтальную подсистему, вертикальную подсистему и кампус (базовую подсистему - магистраль между зданиями.

. Подсистемы рабочей группы не всегда совпадают с горизонтальной подсистемой, особенно на развивающихся объектах. А на проектирование административной подсистемы накладывают свою специфику некоторые аппаратные комплексы по дистанционному управлению, разграничению доступа, безопасности и т.п.

Горизонтальная подсистема

Горизонтальная подсистема - это территориальная подсистема. Обычно основной объем работ по прокладкам кабеля приходится на нее. Подсистема рабочей группы и административная подсистема, как правило, являются ее составными частями. В зависимости от характеристик объекта, на котором она устанавливается (производственный цех, этаж административного здания, спортивный стадион, морской порт, выставочный павильон и т.п.), эту подсистему приходится проектировать на оптоволокне, защищенной или незащищенной витой паре, коаксиальном кабеле. Однако, в последнее время для этих целей редко используется коаксиальный кабель.

Существуют два основных стандарта распределения пар проводов по контактам разъемов RJ45: EIA-T568A и EIA-T568B. Существуют еще внутрифирменные стандарты для работы с определенными марками кабелей и коммутационного оборудования, но правила применения данных видов кабельной продукции писываются в сопроводительных документах. По стандарту EIA-T568A пары распределяются следующим образом (см. рис 1,2).

 

Рис.1. Соответствие цветовых маркировок парам проводников



Рис. 2. Расположение пар и контактов на разъемах по стандартам Т568А, Т568В и Ethernet.

- обращать внимание на упаковочные листы к соединителям. Некоторые фирмы (например Hubbell Premise Wiring) выпускают соединители с отличным от приведенного выше распределением пар;

- в пределах одной горизонтальной подсистемы использовать кабель одной марки одного и того же производителя;

- вся подсистема должна содержать изделия только 5-й категории (включая патч-панели, розетки и разъемы);

- горизонтальные кабели должны иметь длину порядка 90 метров (стандарт IEEE 802.3 запрещает применение кабеля длиной более 90 м);

- соединительные кабели (кабели, прокладываемые от розетки до сетевого адаптера компьютера) не должны иметь длину более 10 метров;

- общая длина горизонтального и соединительного кабелей не должна превышать 100 метров;

- расплетение пар при их заделке допускается не более чем на 1/2 дюйма (12.7 мм);

- общее количество соединителей в горизонтальной проводке не должно превышать четырех устройств.



Обратите внимание на то, что номера пар в стандартах 568А и 568В меняют свое месторасположение и даже цвет, но при этом "информационная" принадлежность контактов остается прежней.