Найдыш В. М. Концепции современного естествознания

Вид материалаУчебник
Подобный материал:
1   ...   28   29   30   31   32   33   34   35   36


Радиоактивное загрязнение окружающей среды в результате ядерных испытаний, аварий на предприятиях ядерной энергетики (Чернобыльская катастрофа 1986 г.), накопления радиоактивных отходов.


560


Все эти негативные тенденции, а также безответственное и неправильное использование достижений цивилизации оказывают губительное влияние на организм человека и создают еще один комплекс экологических проблем—медико-генетический. Учащаются известные ранее заболевания и появляются совершенно новые, ранее не известные. Сложился целый комплекс «болезней цивилизации», порожденных научно-техническим прогрессом (возрастание темпа жизни, количества стрессовых ситуаций, гиподинамия, нарушение питания, злоупотребление фармацевтическими препаратами и др.) и экологическим кризисом (особенно загрязнением среды мутагенными факторами); глобальной проблемой становится наркомания.


Масштабы загрязнения природной среды настолько велики, что естественные процессы метаболизма и разбавляющая деятельность атмосферы и гидросферы не в состоянии нейтрализовать вредное воздействие производственной деятельности человека. В результате способность к саморегуляции складывавшихся миллионы лет (в ходе эволюции) систем биосферы подрывается, а сама биосфера разрушается. Если этот процесс не остановить, то биосфера просто умрет. А вместе с ней исчезнет и человечество.


К сожалению, в массовом, обыденном сознании нет достаточного понимания остроты сложившейся ситуации. Люди по-прежнему живут и действуют в убеждении, что природная среда неограниченна и неисчерпаема. Они удовлетворяются своим временным благополучием, ближайшими целями и немедленным благом, а возникшие экологические угрозы не воспринимают всерьез, относя их в далекое будущее. Люди мало задумываются о том, в каких природных условиях будут жить их потомки (причем даже не далекие, а уже внуки и правнуки), и позволят ли эти условия вообще выжить человеку. Жертвовать своими потребностями человечество мало расположено. (Это нередко относится и к тем, кто принимает государственные решения.) Такой эгоистический путь ведет к экологической катастрофе и гибели цивилизации.


17.1.4. Принципы и пути преодоления экологического кризиса. Таким образом, перед человечеством остро встала проблема сознательного и целенаправленного регулирования обмена веществом и энергией между обществом и биосферой, выработки стратегии охраны природы, а значит, и самого человека. Такое регулирование может осуществляться на основе следующих принципов.


561


+ Человечество развивается до тех пор, пока сохраняется равновесие между предметно-материальным преобразованием им природной среды и восстановлением этой среды (естественным и искусственным). Нарушение равновесия неизбежно ведет к гибели человечества.


+ Период неконтролируемого взаимодействия общества и природной среды заканчивается [1]. Охрана природы исторически неизбежна; ценность природы выше эгоистических и корпоративных интересов и носит характер абсолютного императива; охрана природы — это прежде всего охрана самого человека; не будет биосферы — не будет человечества.


1 Количественные границы, за которыми начинается разрушение биосферы, экологи определяют следующим образом: «Грубо говоря, можно изменить лик планеты на 100% на одной сотой части Земли, на 10% на ее десятой части или на I % глобально. За этим пределом лежит неминуемая деструкция биосферы» (Реймерс Н.Ф. Экология. Теории, законы, правила и гипотезы. М., 1994. С. 209).


+ От безоглядной эксплуатации природной среды нужно перейти к очень осторожному изменению среды жизни человека, к двусторонней адаптации (коэволюции) и, возможно, к абсолютным экологическим ограничениям. Выживание человека — доминанта экономики и политики.


+ Экологическое в конечном счете оказывается и наиболее экономичным. Чем рациональнее подход к природных ресурсам, тем меньше вложений потребуется для восстановления баланса между человечеством и природой. У наших потомков «поле возможностей» рационального решения экологических проблем будет уже, степеней свободы меньше, чем у нас.


+ Принцип необходимости разнообразия природы: только многообразная и разнообразная биосфера устойчива и высокопродуктивна.


+ Идея В.И. Вернадского о превращении биосферы в ноосферу означает, что разум человека будет играть решающую роль в развитии системы взаимодействий общества и природы, прежде всего — в управлении самим человеком, его потребностями. При этом всегда нужно иметь в виду: природные системы настолько сложны, что заранее предсказать и предвидеть все последствия их преобразования, по существу, невозможно, многие из них лежат за пределами современных знаний [1]. Кроме того, каждый компонент биосферы потенциально полезен; трудно, а подчас и просто невозможно предвидеть то значение, которое он будет иметь для человечества в будущем.


1 О масштабах системной сложности биосферы свидетельствуют такие оценки: расчет параметров биосферы требует операций с величинами, количество которых колеблется в пределах от 1050 до 101000; для решения простейшей из таких задач на ЭВМ (с быстродействием 1010 операций в секунду), при условии, что будет привлечено 1010 ЭВМ (грандиозное количество!), понадобится в простейшем варианте 1030 с, т.е. 3 1021 лет, тогда как жизнь на Земле существует всего 3 109 лет. Разница в 12 порядков впечатляет, не правда ли?


562


+ Попытки решить экологические проблемы за счет выселения людей в Космос, которые у нас в стране (родине идеи и практики освоения Космоса, К.Э. Циолковского и Ю.А. Гагарина) одно время были очень популярны, — продолжают традиции экстенсивного подхода к этим проблемам. При всей их внешней привлекательности они утопичны и должны быть отнесены к разряду фантастики.


Научно-технологические разработки позволяют выделить следующие пути, методы, средства разрешения или по крайней мере смягчения экологического кризиса:


+ создавать эффективные очистные сооружения, развивать безотходные (замкнутые) и малоотходные технологии [2];


2 Это возможно, в частности, на пути создания территориально-промышленных комплексов с предприятиями, взаимосвязанными принципами безотходной технологии в масштабах всего экономического района.


+ переходить на циклическое использование ресурсов, прежде всего водных;

+ разрабатывать технологии комплексной переработки сырья;

+ не допускать перепроизводства энергии, которое может дестабилизировать геофизические системы на Земле;

+ резко ограничивать извлечение химических веществ из недр планеты, выброс и загрязнение среды обитания;

+ снижать материалоемкость готовой продукции: количество природного вещества в усредненной единице общественного продукта необходимо уменьшать (миниатюризация изделий, разработка и применение ресурсосберегающих технологий и т.п.);


563


+ увеличивать скорость оборота вовлекаемых природных ресурсов, особенно на фоне развития безотходных технологий;

+ исключить из производства ядохимикаты, способные накапливаться в организмах животных и растений;

+ проводить лесонасаждения, совершенствовать использование лесополос (они увеличивают снегозадержание, здесь птицы строят гнезда, что в свою очередь способствует уничтожению вредителей сельскохозяйственных культур и др.);

+ расширять сеть заповедников, охраняемых природных территорий;

+ создавать центры разведения исчезающих животных и растений с их последующим возвращением в естественные места обитания;

+ развивать биологические методы защиты сельскохозяйственных культур и лесов, экологические биотехнологии (см. 17.2.3);

+ разрабатывать методы планирования роста народонаселения;

+ совершенствовать правовое регулирование охраны природы;

+ развивать международное экологическое сотрудничество, разрабатывать правовые основы международной глобальной экополитики;

+ формировать экологическое сознание, системы экологического образования и воспитания.


Отметим еще одно обстоятельство. Отстаивание экологических принципов в борьбе с технократическими и прагматическими установками и ценностями требует коллективной воли, а нередко и личного мужества.


Политики, экономисты, инженеры, хозяйственники и т.д. — все будут просить вас быть «разумными», «подходить с ответственностью» и идти на компромиссы. Вы обнаружите, что вам противостоят люди -часто умные, приятные, благонамеренные люди, которые хотят всего лишь продолжать действовать так, как вполне можно было действовать в последние два столетия. Помните всегда: эти люди ваши противники. Какими бы благими ни были их намерения, они невольно несут угрозу вам, вашим детям и детям ваших детей. То, что от их деятельности пострадают и они сами, и их потомки, не делает их менее опасными для всего мира [1].


1 Биология охраны природы. М., 1983. С. 386.


564


77.2 Биотехнологии и будущее человечества


17.2.1. Понятие биотехнологии. В XXI в. биология выступает лидером естествознания. Это обусловлено прежде всего возрастанием ее практических возможностей, ее программирующей ролью в аграрной, медицинской, экологической и других сферах деятельности, способностью решать важнейшие проблемы жизнедеятельности человека, в конечном счете даже определять судьбы человечества (в связи с перспективами биотехнологий, генной инженерии) и т.п. Одной из важнейших форм связи современной биологии с практикой являются биотехнологии.


Биотехнологии — технологические процессы, реализуемые с использованием биологических систем — живых организмов и компонентов живой клетки. Другими словами, биотехнологии связаны с тем, что возникло биогенным путем. Биотехнологии основаны на последних достижениях многих отраслей современной науки: биохимии и биофизики, вирусологии, физико-химии ферментов, микробиологии, молекулярной биологии, генетической инженерии, селекционной генетики, химии антибиотиков, иммунологии и др. [1]


1 См.: Биотехнология. М., 1984; Сассон А. Биотехнология: свершения и надежды. М., 1987.


Сам термин «биотехнология» новый: он получил распространение в 1970-е гг., но человек имел дело с биотехнологиями и в далеком прошлом. Некоторые биотехнологические процессы, основанные на применении микроорганизмов, человек использует еще с древнейших времен: в хлебопечении, в приготовлении вина и пива, уксуса, сыра, различных способах переработки кож, растительных волокон и т.д. Современные биотехнологии основаны главным образом на культивировании микроорганизмов (бактерий и микроскопических грибов), животных и растительных клеток, методах генной инженерии.


Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, агробиотехнологии и экологические биотехнологии. Новейшим и важнейшим ответвлением биотехнологии является генная инженерия.


565


17.2.2. Медицинские биотехнологии. Медицинские биотехнологии подразделяются на диагностические и лечебные. Диагностические медицинские биотехнологии в свою очередь разделяют на химические (определение диагностических веществ и параметров их обмена) и физические (определение особенностей физических процессов организма).


Химические диагностические биотехнологии используются в медицине давно. Но если раньше они сводились к определению в тканях и органах веществ, имеющих диагностическое значение (статический подход), то сейчас развивается и динамический подход, позволяющий определять скорости образования и распада представляющих интерес веществ, активность ферментов, осуществляющих синтез или деградацию этих веществ, и др. Кроме того, современная диагностика разрабатывает методы функционального подхода, с помощью которого можно оценивать влияние функциональных воздействий на изменение диагностических веществ, а следовательно, выявлять резервные возможности организма.


В будущем возрастет роль физической диагностики, которая дешевле и быстрее, чем химическая, и состоит в определении физико-химических процессов, лежащих в основе жизнедеятельности клетки, а также физических процессов (тепловых, акустических, электромагнитных и др.) на тканевом уровне, уровне органов и организма в целом. На базе такого рода анализа в рамках биофизики сложных биологических систем будут развиваться новые методы физиотерапии, выяснится смысл многих так называемых нетрадиционных методов лечения, приемов народной медицины и т.д.


Биотехнологии широко используются в фармакологии. В древности для лечения больных применяли животные, растительные и минеральные вещества. Начиная с XIX в. в фармакологии получают распространение синтетические химические препараты, а с середины XX в. и антибиотики — особые химические вещества, которые образуются микроорганизмами и способны оказывать избирательно токсическое воздействие на другие микроорганизмы. В конце XX в. фармакологи обратились к индивидуальным биологически активным соединениям и стали составлять их оптимальные композиции, а также использовать специфические активаторы и ингибиторы определенных ферментов, суть действия которых — в вытеснении патогенной микрофлоры невредной для здоровья людей микрофлорой (использование микробного антагонизма).


566


Биотехнологии помогают в борьбе современной медицины с сердечно-сосудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями как патологическим нарушением иммунитета (способность организма защищать свою целостность и биологическую индивидуальность), старением и вирусными инфекциями (в том числе со СПИДом). Так, развитие иммунологии (науки, изучающей защитные свойства организма) способствует лечению аллергии. При аллергии организм отвечает на воздействие некоторого специфического аллергена чрезмерной реакцией, повреждающей его собственные клетки и ткани в результате отека, воспаления, спазма, нарушений микроциркуляции, гемодинамики и др. Иммунология, изучая клетки, осуществляющие иммунный ответ (иммуноциты), позволяет создавать новые подходы к лечению иммунологических, онкологических и инфекционных заболеваний.


Человек пока не умеет лечить СПИД и плохо лечит вирусные инфекции. Химиотерапия и антибиотики, эффективные в борьбе с бактериальной инфекцией, неэффективны в отношении вирусов (например, возбудителей атипичной пневмонии). Предполагается, что здесь существенный прогресс будет достигнут благодаря развитию иммунологии, молекулярной биологии вирусов, в частности изучению взаимодействия вирусов со специфическими для них клеточными рецепторами.


Биотехнологическими способами производят витамины, диагностические средства для клинических исследований (тест-системы на наркотики, лекарства, гормоны и т.п.), биоразлагаемые пластмассы, антибиотики, биосовместимые материалы. Новая область биоиндустрии — производство пищевых добавок.


17.2.3. Сельскохозяйственные и экологические биотехнологии. В XX в.


произошла «зеленая революция» — за счет использования минеральных удобрений, пестицидов и инсектицидов удалось добиться резкого повышения продуктивности растениеводства. Но сейчас понятны и ее отрицательные последствия, например насыщение продуктов питания нитратами и ядохимикатами. Основная задача современных агробиотехнологий — преодоление отрицательных последствий «зеленой революции», микробиологический синтез средств защиты растений, производства кормов и ферментов для кормопроизводства и др. При этом упор делается на биологи-


567


ческие методы восстановления плодородия почвы, биологические методы борьбы с вредителями сельскохозяйственных культур, на переход от монокультур к поликультурам (что повышает выход биомассы с единицы площади сельхозугодий), выведение новых высокопродуктивных и обладающих другими полезными свойствами (например, засухоустойчивостью или устойчивостью к засолению) сортов культурных растений.


Продовольственные сельскохозяйственные культуры служат сырьем для пищевой промышленности. Биотехнологии используются при изготовлении пищевых продуктов из растительного и животного сырья, их хранении и кулинарной обработке, при производстве искусственной пищи (искусственной икры, искусственного мяса из сои, бобы которой богаты полноценным белком), при производстве корма для скота из продуктов, полученных из водорослей и микробной биомассы (например, получение кормовой биомассы из микробов, растущих на нефти).


Поскольку микроорганизмы чрезвычайно разнообразны, микробиологическая промышленность на их основе вырабатывает самые разные продукты, например ферментные препараты, находящие широкое применение в производстве пива, спирта и т.д.


Биотехнологии выступают одним из важнейших способов решения экологических проблем. Они применяются для уничтожения загрязнений окружающей среды (например, очистка воды или очистка от нефтяных загрязнений), для восстановления разрушенных биоценозов (тропических лесов, северной тундры), восстановления популяций исчезающих видов или акклиматизации растений и животных в новых местах обитания (см. 17.2.6).


Так, с помощью биотехнологий решается проблема освоения загрязненных территорий устойчивыми к этим загрязнениям видами растений. Например, зимой в городах для борьбы со снежными заносами используются минеральные соли, от которых гибнут многие виды растений. Однако некоторые растения устойчивы к засолению, способны поглощать цинк, кобальт, кадмий, никель и другие металлы из загрязненных почв; конечно, они предпочтительнее в условиях больших городов. Выведение сортов растений с новыми свойствами — одно из направлений экологической биотехнологии.


568


Важные направления экологических биотехнологий — ресурсная биотехнология (использование биосистем для разработки полезных ископаемых), биотехнологическая (с использованием бактериальных штаммов) переработка промышленных и бытовых отходов, очистка сточных вод, обеззараживание воздуха, генно-инженерные экологические биотехнологии (см. 17.2.6).


17.2.4. Многообразие сфер применения биотехнологий. Биотехнологии успешно применяются в некоторых «экзотических» отраслях. Так, во многих странах микробная биотехнология используется для повышения нефтеотдачи. Микробиологические технологии исключительно эффективны и при получении цветных и благородных металлов. Если традиционная технология включает в себя обжиг, при котором в атмосферу выбрасывается большое количество вредных серосодержащих газов, то при микробной технологии руда переводится в раствор (микробное окисление), а затем путем электролиза из него получают ценные металлы.


Использование метанотрофных бактерий позволяет снизить концентрацию метана в шахтах. А для отечественной угледобычи проблема шахтного метана всегда была одной из самых острых: по статистике, из-за взрывов метана в шахтах каждый добытый 1 млн т угля уносит жизнь одного шахтера.


Созданные биотехнологическими методами ферментные препараты находят широкое применение в производстве стиральных порошков, в текстильной и кожевенной промышленности.


Космическая биология и медицина изучают закономерности функционирования живых организмов, прежде всего человеческого, в условиях космоса, космического полета, пребывания на других планетах и телах Солнечной системы. Одним из важных направлений в этой области является разработка космических биотехнологий — замкнутых биосистем, предназначенных для функционирования в условиях длительного космического полета. Созданная отечественной наукой система такого рода способна обеспечить жизнедеятельность космонавтов в течение 14 лет. Этого вполне достаточно для реализации космической мечты человечества — полета к ближайшим планетам Солнечной системы, прежде всего к Марсу.


Таким образом, современные биотехнологии исключительно разнообразны. Не случайно XXI в. нередко называют веком биотехнологии. Важнейшим ответвлением биотехнологии, открывающим самые ошеломляющие перспективы перед человечеством, является генная инженерия.


569


17.2.5. Развитие генной инженерии. Генная инженерия возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-лигазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое. Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур — рекомбинантных ДНК. Рекомбинантная молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов — белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК.


Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онко-генного вируса обезьяны, а затем — микроорганизмы, несущие в себе гены мушки дрозофилы, кролика, человека и т.д. Впоследствии удалось осуществить микробный (и недорогой) синтез многих биологически активных веществ, присутствующих в тканях животных и растений в весьма низких концентрациях: инсулина, интерферона человека, гормона роста человека, вакцины против гепатита, а также ферментов, гормональных препаратов, клеточных гибридов, синтезирующих антитела желаемой специфичности, и т.п.


Генная инженерия открыла перспективы конструирования новых биологических организмов — трансгенных растений и животных с заранее запланированными свойствами. По сути, непреодолимых природных ограничений для синтеза генов нет (так, существуют программы по созданию трансгенной овцы, покрытой вместо шерсти шелком; трансгенной козы, молоко которой содержит ценный для человека интерферон; трансгенного шпината, который вырабатывает белок, подавляющий ВИЧ-инфекции, и др.). Возникла новая отрасль промышленности — трансгенная биотехнология, занимающаяся конструированием и применением трансгенных организмов. (Сейчас в США функционирует уже около 2500 генно-инженерных фирм.)