М. Бен-Ари Языки программирования. Практический сравнительный анализ. Предисловие

Вид материалаДокументы

Содержание


Формальный параметр —
Фактический параметр —
Установление соответствия параметров
7.3. Передача параметров подпрограмме
Параметры в языках С и C++
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   18
Глава 7


Подпрограммы


7.1. Подпрограммы: процедуры и функции


Подпрограмма — это сегмент программы, к которому можно обратиться из любого места внутри программы. Подпрограммы используются по разным причинам:


• Сегмент программы, который должен выполняться на разных стадиях вычисления, может быть написан один раз в виде подпрограммы, а затем многократно выполняться. Это экономит память и позволяет избежать ошибок, возможных при копировании кода с одного места на другое.


• Подпрограмма — это логическая единица декомпозиции программы. Да­же если сегмент выполняется только один раз, полезно оформить его в виде подпрограммы с целью тестирования, документирования и улучше­ния читаемости программы.


• Подпрограмму также можно использовать как физическую единицу де­композиции программы, т. е. как единицу компиляции. В языке Fortran подпрограмма (subroutine) — это единственная единица и декомпозиции, и компиляции. В современных языках физической единицей декомпозиции является модуль, представляющий собой группу объявлений и подпрограмм (см. гл. 13).


Подпрограмма состоит из:


• объявления, которое задает интерфейс с подпрограммой; это объявление включает имя подпрограммы, список параметров (если есть) и тип воз­вращаемого значения (если есть);


• локальных объявлений, которые действуют только внутри тела подпро­граммы;


• последовательности выполняемых операторов.


Локальные объявления и выполняемые операторы образуют тело под­программы.

Подпрограммы, которые возвращают значение, называются функциями (functions), а те, что не возвращают, — процедурами (procedures). Язык С не име­ет отдельного синтаксиса для процедур; вместо этого следует написать функ­цию, которая возвращает тип void, т.е. тип без значения:


C



void proc(int a, float b);


Такая функция имеет те же свойства, что и процедура в других языках, поэто­му мы используем термин «процедура» и при обсуждении языка С.


Обращение к процедуре задается оператором вызова процедуры call. В языке Fortran он имеет специальный синтаксис:


C



call proc(x,y)


тогда как в других языках просто пишется имя процедуры с фактическими па­раметрами:


C

ргос(х.у);


Семантика вызова процедуры следующая: приостанавливается текущая по­следовательность команд; выполняется последовательность команд внутри тела процедуры; после завершения тела процедуры выполнение продолжает­ся с первой команды, следующей за вызовом процедуры. Это описание игно­рирует передачу параметров и их области действия, что будет объектом де­тального рассмотрения в следующих разделах.

Так как функция возвращает значение, объявление функции должно опре­делять тип возвращаемого значения. В языке С тип функции задается в объяв­лении функции перед ее именем:


C



int func(int a, float b);


тогда как в языке Ada используется другой синтаксис:


Ada



function Func(A: Integer; В: Float) return Integer;


Вызов функции является не оператором, а элементом выражения:


C

a = x + func(r,s) + y;


Тип результата функции не должен противоречить типу, ожидаемому в выра­жении. Обратите внимание, что в языке С во многих случаях делаются неяв­ные преобразования типов, тогда как в Ada тип результата должен точно соот­ветствовать контексту. По смыслу вызов функции аналогичен вызову проце­дуры: приостанавливается вычисление выражения; выполняются команды тела функции; затем возвращенное значение используется для продолжения вычисления выражения.

Термин «функция» фактически совершенно не соответствует тому контек­сту, в котором он употребляется в обычных языках программирования. В математике функция — всего лишь отображение одного набора значений на дру­гой. Если использовать техническую терминологию, то математическая фун­кция не имеет побочного эффекта, потому что ее «вычисление» прозрачно в точке, в которой делается «вызов». Если есть значение 3.6, и вы запрашива­ете значение sin(3.6), то вы будете получать один и тот же результат всякий раз, когда в уравнении встретится эта функция. В программировании функ­ция может выполнять произвольное вычисление, включая ввод-вывод или изменение глобальных структур данных:


int x,y,z;


C
intfunc(void)

{

у = get(); /* Изменяет глобальную переменную */

return x*y; /* Значение зависит от глобальной переменной */

z = х + func(void) + у;


Если оптимизатор изменил порядок вычисления так, что х + у вычисляется перед вызовом функции, то получится другой результат, потому что функция изменяет значение у.

Поскольку все подпрограммы в С — функции, в программировании на языке С широко используются возвращаемые значения и в «невычисли­тельных» случаях, например в подпрограммах ввода-вывода. Это допустимо при условии, что понятны возможные трудности, связанные с зависимостью от порядка и оптимизацией. Исследование языков программирования приве­ло к разработке интереснейших языков, которые основаны на математически правильном понятии функции (см. гл. 16).


7.2. Параметры


В предыдущем разделе мы определили подпрограммы как сегменты кода, ко­торые можно неоднократно вызывать. Практически всегда при вызове требу­ется выполнять код тела подпрограммы для новых данных. Способ повлиять на выполнение тела подпрограммы состоит в том, чтобы «передать» ей необ­ходимые данные. Данные передаются подпрограмме в виде последовательно­сти значений, называемых параметрами. Это понятие взято из математики, где для функции задается последовательность аргументов: sin (2piК). Есть два понятия, которые следует четко различать:


Формальный параметр — это объявление, которое находится в объявле­нии подпрограммы. Вычисление в теле подпрограммы пишется в.терми-нах формальных параметров.


Фактический параметр — это значение, которое вызывающая программа передает подпрограмме.


В следующем примере:


int i,,j;

char а;

void p(int a, char b)


C
{

i = a + (int) b;

}


P(i,a);

P(i+j, 'x');


формальными параметрами подпрограммы р являются а и b, в то время как фактические параметры при первом вызове — это i и а, а при втором вызове — i + j и 'х'.

На этом примере можно отметить несколько важных моментов. Во-пер­вых, так как фактические параметры являются значениями, то они могут быть константами или выражениями, а не только переменными. Даже когда пере­менная используется как параметр, на самом деле подразумевается «текущее значение, хранящееся в переменной». Во-вторых, пространство имен у раз­ных подпрограмм разное. Тот факт, что первый формальный параметр назы­вается а, не имеет отношения к остальной части программы, и этот параметр может быть переименован, при условии, конечно, что будут переименованы все вхождения формального параметра в теле подпрограммы. Переменная а, объявленная вне подпрограммы, полностью независима от переменной с та­ким же именем, объявленной внутри подпрограммы. В разделе 7.7 мы более подробно рассмотрим связь между переменными, объявленными в разных подпрограммах.


Установление соответствия параметров


Обычно фактические параметры при вызове подпрограммы только перечис­ляются, а соответствие их формальным параметрам определяется по позиции параметра:


Ada



procedure Proc(First: Integer; Second: Character);

Proc(24, 'X');


Однако в языке Ada при вызове возможно использовать установление соответствия по имени, когда каждому фактическому параметру предшеству­ет имя формального параметра. Следовать порядку объявления параметров при этом не обязательно:



Ada
Ada Proc(Second => 'X', First => 24);


Обычно этот вариант используется вместе с параметрами по умолчанию, при­чем параметры, которые не написаны явно, получают значения по умолча­нию, заданные в объявлении подпрограммы:



Ada
procedure Proc(First: Integer := 0; Second: Character := '*');

Proc(Second => 'X');


Соответствие по имени и параметры по умолчанию обычно используются в командных языках операционных систем, где каждая команда может иметь множество параметров и обычно необходимо явно изменить только некото­рые из них. Однако этот стиль программирования таит в себе ряд опасностей. Использование параметров по умолчанию может сделать программу труд­ной для чтения, потому что синтаксически отличающиеся обращения факти­чески вызывают одну и ту же подпрограмму. Соответствие по имени являет­ся проблематичным, потому что при этом зависимость объявления подпро­граммы и вызовов оказывается более сильной, чем это обычно требуется. Если при вызовах библиотечных подпрограмм вы пользуетесь только пози­ционными параметрами, то вы могли бы купить библиотеку у конкури­рующей фирмы и просто перекомпилировать или перекомпоновать про­грамму:


Ada



X:=Proc_1 (Y) + Proc_2(Z);


Однако если вы используете именованные параметры, то, возможно, вам при­дется сильно изменить свою программу, чтобы установить соответствие но­вым именам параметров:



Ada
X := Proc_1(Parm => Y) + Proc_2(Parm => Z);


7.3. Передача параметров подпрограмме


Описание механизма передачи параметров — один из наиболее тонких и важ­ных аспектов спецификации языка программирования. Неверная передача параметров — главный источник серьезных ошибок, поэтому мы подробно рассмотрим этот вопрос.

Давайте начнем с данного выше определения: значение фактического па­раметра передается формальному параметру. Формальный параметр — это просто переменная, которая объявлена внутри подпрограммы, поэтому, оче­видно, нужно копировать значение фактического параметра в то место памя­ти, которое выделено для формального параметра. Этот механизм называется





«семантикой copy-in» («копирование в») или «вызовом по значению» (call-by-value). На рисунке 7.1 показана семантика copy-in для процедуры:


procedure Proc(F: in Integer) is

begin


Ada
... ;

end Proc;


и вызова:

Ada

Proc(2+3*4);


Преимущества семантики copy-in:


• Copy-in является самым надежным механизмом передачи параметров. Поскольку передается только копия фактического параметра, подпро­грамма никак не может испортить фактический параметр, который, не­сомненно, «принадлежит» вызывающей программе. Если подпрограмма изменяет формальный параметр, изменяется только копия, а не ориги­нал.


• Фактические параметры могут быть константами, переменными или вы­ражениями.


• Механизм copy-in может быть очень эффективным, потому что началь­ные затраты на копирование делаются один раз, а все остальные обраще­ния к формальному параметру на самом деле являются обращениями к локальной копии. Как мы увидим в разделе 7.7, обращение к локальным переменным чрезвычайно эффективно.


Если семантика copy-in настолько хороша, то почему существуют другие ме­ханизмы? дело в том, что часто мы хотим изменить фактический параметр, несмотря на тот факт, что такое изменение «небезопасно»:


• Функция возвращает только один результат, но, если результат вычис­ления достаточно сложен, может возникнуть желание вернуть несколь­ко значений. Чтобы сделать это, необходимо задать в процедуре не­сколько фактических параметров, которым могут быть присвоены ре­зультаты вычисления. Обратите внимание, что этого часто можно избе­жать, определив функцию, которая возвращает в качестве результата за­пись.


• Кроме того, цель выполнения подпрограммы может состоять в моди­фикации данных, которые ей передаются, а не в их вычислении. Обычно это происходит, когда подпрограмма обрабатывает структуру данных. Например, подпрограмма, сортирующая массив, не вычисляет значение; ее цель состоит только в том, чтобы изменить фактический параметр. Нет никакого смысла сортировать копию массива!


• Параметр может быть настолько большим, что копировать его неэффек­тивно. Если copy-in используется для массива из 50000 целых чисел, мо­жет просто не хватить памяти, чтобы сделать копию, или затраты на ко­пирование будут чересчур большими.


Первые две ситуации легко разрешить с помощью семантики copy-out («копирование из»). Фактический параметр должен быть переменной, а под­программе передается адрес фактического параметра, который она сохраняет. Для формального параметра используется временная локальная переменная, и значение должно быть присвоено формальному параметру, по крайней ме­ре, один раз во время выполнения подпрограммы. Когда выполнение под­программы завершено, значение копируется в переменную, на которою ука­зывает сохраненный адрес. На рисунке 7.2 показана семантика copy-out для следующей подпрограммы:


procedure Proc(F: out Integer) is

begin


Ada
F := 2+3*4; -- Присвоение параметру

end Proc;


A: Integer;

Proc(A); -- Вызов процедуры с переменной


Когда нужно модифицировать фактический параметр, как, например, в sort, можно использовать семантику copy-in/out фактический параметр копирует-





ся в подпрограмму, когда она вызывается, а результирующее значение копи­руется обратно после ее завершения.

Однако механизмы передачи параметров на основе копирования не могут решить проблему эффективности, связанную с «большими» параметрами. Ре­шение, которое известно как «вызов по ссылке» (call-by-reference) или «семан­тика ссылки» (reference cemantics), состоит в том, чтобы передать адрес факти­ческого параметра и обращаться к параметру косвенно (см. рис. 7.3). Вызов подпрограммы эффективен, потому что для каждого параметра передается только указатель небольшого, фиксированного размера; однако обращение к параметру может оказаться неэффективным из-за косвенности.

Чтобы получить доступ к фактическому параметру, нужно загрузить его ад­рес, а затем выполнить дополнительную команду для загрузки значения. Обра­тите внимание, что при использовании семантики ссылки (или copy-out), фактический параметр должен быть переменной, а не выражением, так как ему будет присвоено значение.

Другая проблема, связанная с вызовом по ссылке, состоит в том, что может возникнуть совмещение имен (aliasing), т. е. может возникнуть ситуация, в ко­торой одна и та же переменная известна под несколькими именами.





В следующем примере внутри функции f переменная global получает алиас (т. е. альтернативное имя) *parm:



C
int global = 4;

inta[10];


int f(int *parm)

{

*parm = 5: /* Та же переменная, что и "global" */

return 6;

}


х = a[global] + f(&global);


В этом примере, если выражение вычисляется в том порядке, в котором оно записано, его значение равно а[4] + 6, но из-за совмещения имен значение выражения может быть 6 + а[5], если компилятор при вычислении выражения выберет порядок, при котором вызов функции предшествует индексации массива. Совмещение имен часто приводит к непереносимости программ.

Реальный недостаток «вызова по ссылке» состоит в том, что этот механизм по сути своей ненадежен. Предположим, что по некоторым причинам под­программа считает, что фактический параметр — массив, тогда как реально это всего лишь одно целое число. Это может привести к тому, что будет затер­та некоторая произвольная область памяти, так как подпрограмма работает с фактическим параметром, а не просто с локальной копией. Этот тип ошибки встречается очень часто, потому что подпрограмма обычно пишется не тем программистом, который разрабатывает вызывающую программу, и всегда возможно некоторое недопонимание.

Безопасность передачи параметров можно повысить с помощью строгого контроля соответствия типов, который гарантирует, что типы формальных и фактических параметров совместимы. Однако все еще остается возможность недопонимания между тем программистом, кто написал подпрограмму, и тем, чьи данные модифицируются. Таким образом, мы имеем превосходный механизм передачи параметров, который не всегда достаточно эффективен (семантика copy-in), а также необходимые, но ненадежные механизмы (семантика copy-out и семантика ссылки). Выбор усложняется ограничения­ми, которые накладывают на программиста различные языки программиро­вания. Теперь мы подробно опишем механизмы передачи параметров для не­скольких языков.


Параметры в языках С и C++


В языке С есть только один механизм передачи параметров — copy-in:


int i = 4; /* Глобальная переменная */

C

void proc(int i, float f)

{

i=i+(int) f; /* Локальная переменная "i" */

}

proc(j, 45.0); /* Вызов функции */

В ргос изменяемая переменная i является локальной копией, а не глобальной переменной i.

Чтобы получить функциональные возможности семантики ссылки или copy-out, пишущий на С программист должен прибегать к явному использо­ванию указателей:

int i = 4; /* Глобальная переменная */ [с]

void proc(int *i, float f)

{

*i = *i+ (int) f; /* Косвенный доступ */

}

proc(&i, 45.0); /* Понадобилась операция получения адреса */


После выполнения ргос значение глобальной переменной i изменится. Необходимость пользоваться указателями для реализации ссылочной семантики следует отнести к неудачным решениям в языке С, потому что на­чинающим программистам приходится изучать это относительно сложное понятие в начале курса.

В языке C++ этот недостаток устранен, поскольку в нем есть возможность задавать параметры специального ссылочного типа (reference parameters):


int i = 4; // Глобальная переменная


C++



void proc(int & i, float f)

{

i = i + (int) f; // Доступ по ссылке

}


proc(i, 45.0); // He нужна операция получения адреса


Обратите внимание на естественность стиля программирования, при ко­тором нет неестественного использования указателей. Это усовершенствова­ние механизма передачи параметров настолько важно, что оправдывает использование C++ в качестве замены С.

Вам часто придется применять указатели в С или ссылки в C++ для пере­дачи больших структур данных. Конечно, в отличие от копирования парамет­ров (copy-in), существует опасность случайного изменения фактического па­раметра. Можно задать для параметра доступ только для чтения, объявив его константой:


void proc(const Car_Data & d)

{

d.fuel = 25; // Ошибка, нельзя изменять константу

}


Объявления const следует использовать возможно шире, как для того, чтобы сделать смысл параметров более прозрачным для читателей программы, так и для того, чтобы отлавливать возможные ошибки.

Другая проблема, связанная с параметрами в языке С, состоит в том, что массивы не могут быть параметрами. Если нужно передать массив, передает­ся адрес первого элемента массива, а процедура отвечает за правильный до­ступ к массиву. Для удобства имя массива в качестве параметра автоматически рассматривается как указатель на первый элемент:


intb[50]; /* Переменная типа массив */


C
void proc(int a[ ]) /* "Параметр-массив" */

{

а[100] = а[200]; /* Сколько элементов? */

}

proc(&b[0]); /* Адрес первого элемента */

proc(b); /* Адрес первого элемента */


Программисты, пишущие на С, быстро к этому привыкают, но, все равно, это является источником недоразумений и ошибок. Проблема состоит в том, что, поскольку параметр — это, фактически, указатель на отдельный элемент, то допустим любой указатель на переменную того же типа:


int i;

void proc(int a[ ]); /* "Параметр-массив" */

proc(&i); /* Допустим любой указатель на целое число!! */


Наконец, в языке С контроль соответствия типов никак не действует между файлами, поэтому можно в одном файле поместить


C
[С] void proc(float f) { ...} /* Описание процедуры */

а в другом файле —



C
void proc(int i); /* Объявление процедуры */ ргос(100);


а затем месяцами искать ошибку.

Язык C++ требует выполнения контроля соответствия типов для парамет­ров. Однако он не требует, чтобы реализации включали библиотечные средст­ва, как в Ada (см. раздел 13.3), которые могут гарантировать контроль соответ­ствия типов для независимо компилируемых файлов. Компиляторы C++ вы­полняют контроль соответствия типов вместе с компоновщиком: типы пара­метров шифруются во внешнем имени подпрограммы (процесс называется name mangling), а компоновщик следит за тем, чтобы связывание вызовов с программами делалось только в случае корректной сигнатуры параметров. К сожалению, этот метод не может охватывать все возможные случаи несоответ­ствия типов.