Аудит / Институциональная экономика / Информационные технологии в экономике / История экономики / Логистика / Макроэкономика / Международная экономика / Микроэкономика / Мировая экономика / Операционный анализ / Оптимизация / Страхование / Управленческий учет / Экономика / Экономика и управление народным хозяйством (по отраслям) / Экономическая теория / Экономический анализ Главная Экономика Экономический анализ
Маракулин В. М.. Равновесный анализ математических моделей экономики с нестандартными ценами., 2001 | |
Введение в нестандартный анализ |
|
Нестандартный анализ, иногда называемый также инфинитезимальным анализом, - это, скорее, математическая техника, нежели самостоятельная теория. Нестандартный анализ оперирует с идеальными элементами, которые могут быть как бесконечно близки к интересующему объекту, так и бесконечно далеки от него. Ниже представлено постро-ение совокупности нестандартных чисел и более сложных нестандартных объектов, ассоциированное с достаточно простой системой логики. Кроме того, приведена сводка необходимых базисных результатов этой теории. С её деталями, а также с большинством из опущенных доказательств, читатель может ознакомится в [18], [1], [9]. Нестандартный анализ находит своё применение во многих областях современной математики. В их числе действительный и комплексный анализ, теория меры и теория вероятности, функциональный анализ и общая топология. Одно из наиболее заметных преимуществ нестандартной методологии состоит в том, что она обладает возможностью упростить математические рассуждения. Например, используя нестандартные методы, обычно можно существенно упростить громоздкие е-5 рассуждения. Поэтому о нестандартном анализе часто говорят, что он служит целям "элиминации количеств". Большинство из приложений нестандартного анализа основывается на идее гиперконечного множества - это множество, которое может быть занумеровано нестандартными натуральными числами, не превосходящими некоторое фиксированное нестандартное натуральное число. Используя это понятие, можно аппроксимировать бесконечные (и даже бесконечномерные) объекты множествами, к которым применимы стандартные заключения о конечных объектах. В частности, в экономико-математической литературе имеется значительное количество работ, использующих идею гиперфинитного множества - это в основном результаты, в которых исследуются "большие" модели экономики (с бесконечным числом агентов или продуктов). Например, таким способом моделируются ситуации, отражающие условия совершенной конкуренции, - это модели, в которых имеется "много" индивидуумов, каждый из которых имеет пренебрежимо малое влияние на экономику в целом. Такого рода постановки приводят к рассмотрению моделей с гиперфинитным множеством экономических агентов, оснащённых стандартно ограниченными возможностями влиять на текущую ситуацию (в модели обмена - околостандартными векторами исходных запасов). Первый результат этого типа появился в пионерской работе Брауна и Робертсона [3], основанной на понятии гиперконечной экономики чистого обмена. Описание достижений в этой области равновесного анализа можно найти в [12] и [1]. Имеется также множество других приложений методов нестандартного анализа к математической экономике и теории игр. В их числе работы по моделям с перекрывающимися поколениями экономических агентов, с бесконечным временным горизонтом, эконо-микам с общественными благами, бескоалиционным играм с "большим" числом игроков и т. д. Во второй главе настоящего пособия будет показано, как с помощью методов нестандартного анализа разрешается проблема существования экономического равновесия при отсутствии в модели (очень нереалистичного) условия Слейтера в задаче потребителя или каких-либо его аналогов (survival assumption). |
|
<< Предыдушая | Следующая >> |
= К содержанию = | |
Похожие документы: "Введение в нестандартный анализ" |
|
|