Темы диссертаций по экономике » Экономика стандартизации и управление качеством продукции

Информационно-статистические методы управления качеством продукции массового производства тема диссертации по экономике, полный текст автореферата

Ученая степень доктор технических наук
Автор Юдин, Сергей Владимирович
Место защиты Тула
Год 1999
Шифр ВАК РФ 08.00.20
Диссертация

Диссертация: содержание автор диссертационного исследования: доктор технических наук , Юдин, Сергей Владимирович

ние и проблемы управления качеством в массовом носерийном производстве ассовое производство как объект исследования . 17 татистические методы управления качеством - сосояние и проблемы. остояние научной проблемы нформационный подход к управлению качеством

4.1. Статистические характеристики энтропии . 36 .4.2. Информационная модель технологического процесса.

4.3. Информационный критерий определения закона распределения случайной величины

4.4. Статистический контроль качества ель и задачи работы. ические основы информационно-статистических меуправления технологическими процессами остановка задачи

2. 3. Коэффициент информационной связи как мера определенности процесса.

2.4. Анализ точности и стабильности технологического процесса

2.4.1. Информационно-статистические оценки параметров точности и стабильности ТП.

2.4.2. Сравнительный анализ параметров точности и стабильности

2.4.3. Критерий значимости смещения центра группирования

2.5. Контрольные карты

2.6. Информационная модель ТП на основе данных предельного контроля (альтернативная модель)

2.7. Регулирование ТП на базе альтернативной модели

2.8. Минимальный объем выборки при анализе ТП

2.9. Выводы.

3. Информационные планы контроля

3.1. Постановка задачи

3.2. Математическая модель контроля

3.3. Оперативная характеристика информационного плана контроля

3.4. Средний выходной уровень дефектности. Предел среднего выходного уровня дефектности

3.5. Сравнительный анализ оперативной характеристики информационного плана контроля

3.5.1. Сравнение оперативных кривых информационных и пуассоновских планов контроля

3.5.2. Сравнительный анализ рекомендаций ГОСТов и информационного подхода

3.6. Планы контроля с усеченными границами (метод АКУД)

3.7. Нормативный уровень дефектности и интегральные риски потребителя и изготовителя

3.8. Система последующих оценок

3.8.1. Информационный анализ

3.8.2. Байесовский подход

3.9. Выводы.

4. Программное обеспечение информационной системы управления качеством

4.1. Универсальная программа множественного корреляционного анализа ANALISYS

4.2. Программа определения закона распределения LAWX.

4.3. Программа информационного моделирования INFM0D

4.4. Программа анализа точности и стабильности технологического процесса STABILITY

4.5. Программа расчета одноступенчатых информационных планов статистического приемочного контроля в массовом производстве PLAN.

4.6. Программа расчета доверительных интервалов входного уровня дефектности по результатам текущего контроля PLANQ.

4.7. Программа расчета одноступенчатых информационных планов СПК для контроля единичной партии PLAN

4.8. Программа расчета доверительных интервалов входного уровня дефектности на основе формулы Байеса PLANQB.

4.9. Программа расчета последовательного плана СПК типа планов Вальда PLANVALD

4.10. Программа расчета функции распределения двумерной гауссовой случайной величины Lxyr

4.11. Агоритмы и методики генерации случайных чисел с заданными свойствами

4.12. Используемые стандартные программы

4.13. Выводы.

5. Методическое обеспечение информационной системы управления качеством

5.1. Определение закона распределения случайной величины

5.2. Построение и анализ информационной модели технологического процесса.

5.3. Контрольная карта альтернативного среднего

5.4. Контрольная карта наладчика

5.5. Выбор и расчет плана статистического приемочного контроля, учитывающего требования изготовителя и потребителя

5.6. Расчет плана СПК по параметру предел среднего выходного уровня дефектности (A0Q.L) (нормативный уровень дефектности - NQL)

5.7. Расчет плана СПК с усеченными границами контроля

5.8. Расчет доверительных границ входного уровня дефектности по результатам контроля

5.9. Выбор планов СПК при помощи таблиц Приложения

5.10. Примеры решения задач

6. Реализация информационных методов в промышленности

6.1. Информационная модель технологического процесса производства патрона калибра 5.45 мм

6.2. Схема контроля ТП производства патрона

Диссертация: введение по экономике, на тему "Информационно-статистические методы управления качеством продукции массового производства"

В диссертационной работе решается научная проблема, заключающаяся в отсутствии методов управления качеством продукции, соответствующих современному уровню развития производства.

Существующие автоматические линии требуют минимального вмешательства человека для своего функционирования. В то же время контроль качества, оценка текущего состояния технологической операции проводятся, как правило, вручную. Время контроля, обработки результатов, выработки управляющих воздействий велико и исчисляется десятками минут, что при производительности линий до 200.1000 штук/мин может привести к появлению большого количества бракованных изделий.

Методы контроля и агоритмы обработки данных, предлагаемые в работе, позволяют упростить процесс контроля, снизить Хего объем и получать при этом более надежные результаты, а также сократить время между получением данных и выработкой управляющих воздействий.

Основные результаты были получены в процессе работы над повышением эффективности производства патронов различного назначения.

Работа относится к следующим приоритетньм направлениям фундаментальных исследований:

Математика: Теория вероятностей и математическая статистика. Механика, машиноведение и процессы управления: Проблемы управления и автоматизации. Информатика, вычислительная техника, автоматизация: Математическое моделирование и методы прикладной математики.

Исследования в рамках хоздоговорных, госбюджетных и инициативных НИР проводились в соответствие с рубрикатором ГАСНТИ по следующим разделам:

55.01.75 - Общие вопросы машиностроения. Экономика, организация, планирование, прогнозирование, управление.

55.01.81 - Измерения, испытания, контроль и управление качеством.

27.41.23 - Машинные методы вычислительной математики.

27.43.51 - Применение теоретико-вероятностных и статистических методов.

27.47.17 - Математическая теория информации.

28.17.19 - Математическое моделирование.

В диссертационной работе на базе методов математической статистики и математической теории информации предложен новый подход к управлению качеством продукции массового производства.

Автоу защищает:

1. Информационно-статистические методы управления качеством продукции в массовом и крупносерийном производстве: методы решения задач математического моделирования, анализа и контроля состояния технологического процесса, основанные на данных предельного (альтернативного) контроля; новые методы расчета планов статистического приемочного контроля (СПК); систему оценки входного уровня дефектности по результатам контроля партии.

2. Разработанный на основе теоретических и экспериментальных исследований программно-методический комплекс, включающий в себя набор из И агоритмов и разработанных на их осно ве программ и методик, охватывающих весь цикл разработки системы управления качеством продукции.

Общая характеристика работы

Анализ современного массового производства и системы обеспечения качества продукции, сложившейся в нем, а также комплекса методик, стандартов и методов математической статистики, применяемого для целей контроля и управления, показал, что теория управления в своем развитии отстала от уровня технологии. Статистические методы контроля и управления, применяемые в промышленности, были, в основном, разработаны в 20-е.50-е годы. До сих пор в промышленности практически не используется современная вычислительная техника. Сложившееся мнение о высокой трудоемкости расчетов планов статистического приемочного контроля, контрольных карт, используемых для контроля качества и оперативного управления, приводит к широкому использованию таблиц, приведенных в различных стандартах и методиках. Эти таблицы, в основном, были рассчитаны в то время, когда низкая производительность ЭВМ ограничивала точность расчетов и количество возможных вариантов. Они не позволяют учесть специфические особенности конкретного предприятия и выпускаемой им продукции.

Современные персональные ЭВМ, стоимость которых сравнима с месячной заработной платой квалифицированного специалиста, по своей производительности многократно превосходят большие ЭВМ типа ЕС-1033, ЕС-1045, ЕС-1060, которые широко использовались еще 10 лет назад, а стоимость которых была зачастую недоступна средним предприятиям.

Расчеты параметров планов контроля, контрольных карт, последующих оценок и выдача рекомендаций занимают секунды, вместо часов.

Существующие схемы контроля и управления имеют низкую информативность, большое временное запаздывание, что приводит к снижению эффективности управления.

Отсутствие современных методов управления, лишенных указанных недостатков, вступает в противоречие с существующими высокопроизводительными технологиями в массовом и крупносерийном производстве.

Диссертационная работа направлена на разрешение этого противоречия путем создания новых методов контроля и управления качеством, основанных на математическом аппарате теории информации, соответствующих современному уровню технического оснащения производства.

Актуальность проблемы возрастает в связи с тенденцией к сокращению затрат на вооружение, конверсией оборонных предприятий, включением отечественных производителей в конкурентную борьбу на свободном рынке.

Если до 1990 года основным заказчиком было государство, возмещавшее практически любые расходы на управление качеством продукции, то в настоящее время предприятия вынуждены всемерно снижать себестоимость продукции, одновременно повышая качество.

Распространение и внедрение в России международных стандартов управления качеством ИСО 9000-9004, ЙСО 8402 [150], заставляет само предприятие заботиться о документальном подтверждении качества продукции. В качестве основного документа выступает сертификат, выдаваемый компетентной организацией (например, Международной Академией качества), на основе анализа системы управления качеством продукции на конкретном предприятии. Основные требования, выдвигаемые при сертификации, следующие: наличие квалифицированного персонала, имеющего образование в области управления качеством; разработанная и внедренная в производство система управления качеством, обеспечивающая необходимые количественные и качественные параметры изделий; отсутствие рекламаций по качеству продукции.

Все это заставляет разрабатывать и внедрять в производство новые статистические методы управления качеством.

Работа велась в рамках реализации постановления СМ СССР № 538 от 08.05.86 г., в котором определялась задача широкого распространения автоматических роторных и роторно-конвейерных линий (АРЛ и АРКЛ) в отраслях народного хозяйства, сокращения сроков и повышения качества их проектирования, организации эффективной эксплуатации; в соответствие с координационным планом АН СССР в направлении 1.11.1.8: "Разработка научных основ комплексной системы конструирования, расчета, освоения и эксплуатации роторных и роторно-конвейерных систем"; программами "Конверсия научно-технического потенциала ВУЗов России" (1993 г.), "Конверсия и высокие технологии" (1994-96 г.г.).

Диссертация явилась результатом исследований, выпоненных в соответствие с решением Государственной комиссии Совета Министров СССР по военно-промышленным вопросам от 05.10.85 г. № 328, на основании приказа отраслевого Министерства 1 897 от 31.12.87 г., в рамках х/д и госбюджетных работ ТуПИ (ТГУ) (темы № 57204/080, 1992 г., ПО "ТПЗ"; № 57302/085, 1993 г., ПО "ТПЗ"; № 57306, 1993 г., ПО "ТПЗ"; 1 57201/080, 1992 г., ПО

ТПЗ"; I 43.11К9, 1993 г., программа "Конверсия научно-технического потенциала ВУЗов России"; № 57.09КВТ, 1994-96 г.г., программа "Конверсия и высокие технологии"), ответственным испонителем и научным руководителем которых являся автор.

Цель работы: разработка и теоретическое обоснование новых методов управления качеством продукции массового и крупносерийного автоматизированного производства, обеспечивающее повышение эффективности производства, снижение трудоемкости и себестоимости обеспечения качества продукции, приведение системы управления качеством продукции к современным требованиям, изложенным в стандартах ИСО серии 9000.

Общая методика исследования заключается в анализе состояния современного автоматизированного производства с массовым и крупносерийным выпуском продукции, системы управления качеством, а также надежности и эффективности применяемого математического аппарата.

Анализ состояния системы управления качеством был проведен на примере комплексного автоматизированного производства (КАП) на базе автоматических роторных линий (АРЛ).

В этом производстве широко используется предельный контроль на базе предельных калибрах. Данные, получаемые с их помощью, используются только для фиксации состояния, в то время как они могут быть использованы и для целей оперативного управления.

Неэффективная система управления снижает реальную производительность, не позволяет радикально улучшить качество продукции.

Результаты анализа определили необходимость комплексного решения задач, связанных с управлением качеством продукции, разработки принципиально нового унифицированного математического аппарата. Теоретической базой этого аппарата явились прикладные методы математической теории информации, идеи информационной теории управления и теоретические методы теории вероятностей и математической статистики.

Теоретические положения работы являются синтезом методов теории информации, математической статистики и теории вероятностей, статистического моделирования.

Достоверность научных положений, выводов и рекомендаций подтверждена результатами имитационного моделирования, сравнением результатов моделирования с результатами, полученными стандартными методами математической статистики.

Научная новизна состоит в разработке и теоретическом обосновании новых методов управления качеством продукции массового и крупносерийного производства.

Новые научные результаты:

1. Разработан комплекс информационно-статистических методов управления качеством продукции массового производства, позволяющий повысить экономическую эффективность производства, снизить затраты на обеспечение качества, повысить качество продукции, привести систему управления качеством к современным требованиям.

2. Доказано, что статистическая оценка энтропии непрерывных случайных величин является универсальной статистикой, которая может быть использована для решения всех задач теории управления качеством.

3. Доказано, что коэффициент информационной связи является мерой определенности процесса.

4. Теоретически обоснован новый метод анализа точности и стабильности ТП, основанный на данных предельного контроля. Установлено, что коэффициент корреляции результатов, полученных этим методом, с результатами, полученными стандартными методами математической статистики, достигает 0.95.0.99. При этом трудоемкость процесса измерений и расчетов снижается в несколько раз.

5. Получена информационная математическая модель контроля, на базе которой разработан новый метод расчета планов приемочного статистического контроля по альтернативному признаку, учитывающий одновременно требования поставщика и потребителя, включающий в расчетные формулы объем партии, что было невозможно на основании прежних методов. Установлено, что оперативная кривая информационного плана контроля более точно отражает объективную реальность, по сравнению с кривыми стандартных планов контроля, рассчитанных на основе распределения Пуассона. Доказано, что для входных параметров плана контроля существует минимальный объем выборки, при несоблюдении которого невозможно оценить качество партии.

6. Разработана методика расчета плана СПК с усеченными границами, основанная на априорной информации о виде закона распределения входного уровня дефектности, которая позволяет уменьшить объем выборки в 2 раза без ухудшения оперативной характеристики плана контроля.

7. Теоретически обоснован план последовательного контроля, основанный на использовании кривых постоянного риска.

1. Состояние и проблемы управления качеством в массовом и крупносерийном производстве 1.1. Массовое производство как объект исследования

Современное массовое и крупносерийное производство отличается большими объемами выпускаемой продукции, высокой степенью автоматизации как самого производства, так и процесса управления качеством. Вместе с тем с ростом производительности современных автоматических линий возникла проблема контроля текущего состояния технологического процесса (ТП), что необходимо для выработки управляющих воздействий. Во многих случаях отсутствуют датчики, которые могли бы встраиваться в технологические линии и автоматически контролировать необходимые параметры. Это приводит к большому объему ручного труда, запаздыванию информации и, следовательно, к несвоевременному вмешательству в технологический процесс, что вызывает повышение уровня брака, лишние затраты на его выявление и исправление.

Наиболее актуальна эта проблема в комплексном автоматизированном производстве (КАП) на базе автоматических роторных линий, где достигнута высочайшая степень автоматизации производства, и где остро проявились противоречия между современной техникой и устаревшей методикой управления качеством продукции [24, 25, 26, 53, 55].

Применение современных автоматических линий с производительностью до 2000 шт/мин существенно повышает требования к бездефектности продукции и, тем более, системе управления и контроля. Основная задача, возникающая в этой связи - это предельная автоматизация производства, в том числе всех контрольных операций. Решение этой задачи позволит перейти к поностью непрерывному производству, отказаться от формирования партий

- 18 изделий, предъявляемых к испытаниям [133, 134].

Анализ комплексных автоматизированных производств, проведенный В.Г.Григоровичем [68], выявил ряд недостатков, присущих применяемым методам управления качеством.

В КАП применяются технические условия на приемку изделий, которые, несмотря на их постоянное совершенствование, обилие указаний по нормам контроля, не дают представления о качестве партий, о риске Потребителя, связанном с принятием "плохой" партии, риске Поставщика, возникающем при браковании "хорошей" партии. Планы контроля, заложенные в ТУ, теоретически не обоснованы и существенно отличаются (в худшую сторону) от существующих зарубежных и российских стандартов.

Если до 1991 года основным заказчиком было государство, возмещавшее практически любые расходы на управление качеством продукции, то в настоящее время предприятия вынуждены всемерно снижать себестоимость продукции, одновременно повышая качество.

Распространение и внедрение в России международных стандартов управления качеством ИСО 9000-9004, ИСО 8402 [150] привело к необходимости не только повышения качества продукции, но и документального подтверждения этого. Возникает необходимость разработки и внедрения на каждом производстве научно-обоснованной системы управления качеством.

1.2. Статистические методы управления качеством -состояние и проблемы

Впервые методы теории вероятностей и математической статистики в приложении к вопросам промышленного производства применил выдающийся русский математик М.В.Остроградский, который еще в 1846 году указывал на возможность применения выборочного метода при контроле качества готовой продукции. Одними из первых исследовали возможность применения математической статистики и теории вероятностей для анализа причин изменчивости величин русские ученые П.А.Чебышев, А.А.Марков, А.М.Ляпунов.

Статистический контроль качества впервые был предложен Шухартом У. А. в 1931 году, как метод контроля продукции массового производства. Цель статистического контроля - стабилизация параметров качества в производственных процессах.

Состояние ТП характеризуется точностью и стабильностью -основными характеристиками, влияющими на качество продукции. Точность - свойство ТП, обуславливающее близость действительных и номинальных значений параметров продукции по их распределению вероятностей. Стабильность - свойство ТП, обуславливающее постоянство распределений вероятностей параметров в течении заданного интервала времени без вмешательства из вне [31].

Разработке методов анализа точности и стабильности посвящены работы Н.А.Бородачёва, А. К. Кутая, X.Б.Кордонского, Е.А.Клеймана, М.И.Коченова, И.С.Солонина и многих других [13, 14, 96, 105, 106, 115, 116, 138, 158, 161, 181, 188, 259, 260, 274].

У. А.Шухарт предложил оценивать состояние технологических операций по выборочным значениям среднего арифметического и среднего квадратического отклонения, и разработал на их основе первую контрольную карту для регулирования ТП [226]. Основным её недостатком стала высокая трудоёмкость.

С целью снижения трудоёмкости карты Шухарта, Д.Шайниным была предложена карта регулирования, не требующая вычисления статистических оценок [226]. Она основана на последовательном анализе А.Вальда [227]. Карта имеет три области: 1) "не вмешиваться"; 2) "продожить измерения"; 3) "произвести подналад-ку". При контроле последовательно производят измерения изделий и определяют, в какой интервал попал результат. Значение каждого последующего измерения суммируется с предыдущим и заносится в соответствующую клетку карты. Достоинство карты Шайни-на в том, что наладчику не нужно полагаться только на свою интуицию. Однако она не исключает необходимости измерения фактического значения контролируемого параметра.

Упрощённую карту регулирования предложил Л.Нельсон [273]. Она также основана на принципе последовательного анализа Вальда. В качестве измерительного прибора используется предельный калибр, соответствующий номинальному значению контролируемого параметра. Результаты измерений изображают на карте точками. Если результат больше номинального, то точка ставится правее и выше предыдущей, или правее и ниже - результат меньше номинала. Контроль продожается, пока ряд точек не окажется в одной из областей: "не вмешиваться" или "произвести подналадку".

Преимущество карты Нельсона в том, что не требуется никаких вычислений. Но по карте нельзя узнать величину подналадки.

Кроме того, поскольку изделия, имеющие номинальные размеры, не войдут в калибр, то наблюдаемое значение среднего арифметического не совпадает с заданным номинальным значением.

Ещё более простой является зонная контрольная карта [266]. Карта разделена на восемь зон, кратных среднему квад-ратическому отклонению, которым присвоены ранговые балы от одного до восьми. При контроле производится последовательное суммирование балов, соответствующих зонам, в которые попадают результаты измерений. При пересечении центральной линии сумма балов становится равной нулю, начинается новый цикл суммирования. Процесс считается разлаженным, если сумма балов не менее восьми. Как средство диагностики происходящих изменений зонная карта превосходит карту Шухарта более чем в десять раз. К её недостаткам следует отнести необходимость измерений фактических значений параметров и отсутствие количественных характеристик состояния технологических операций.

Обобщая рассмотренные примеры контрольных карт, можно выявить определённую тенденцию в их построении. Упрощение карты, а следовательно, повышение оперативности работы с ней неизбежно приводит к снижению информативности контроля и возможностей управления ТП (карта Нельсона, зонная карта). Напротив, стремление повысить информативность контроля сопряжено с более сложными вычислительными действиями, что снижает оперативность контроля и управления ТП (карты Шухарта и Шайнина).

Чтобы повысить информативность контроля с помощью предельных калибров, необходимо учесть информацию о виде распределения значений контролируемого параметра. В этом случае вместо сложной двойной карты Шухарта можно использовать карту дефектных изделий, а контроль производить с помощью предельных калибров, настроенных на более узкие по сравнению с допуском границы контроля.

Применение такой карты рассмотрено в [226]. Однако результаты контроля не фиксируют величины смещения центра рассеяния размеров. Кроме того, при разработке карты не учитывалось, что контроль на узких границах позволяет снизить объём выборки, необходимый для достижения такого же риска изготовителя, как и на широких границах.

Стремление снизить затраты на оценку качества готовой продукции массового производства потребовало применения статистических методов к задачам приёмочного контроля. Статистический приемочный контроль (СПК) успешно внедряется в промышленности и постоянно совершенствуется во многих странах. Большой вклад в разработку методов статистического контроля внесли такие учёные как Ю.К.Беляев, А.Н.Комогоров, Д.Коуден, А.К.Кутай, Х.Б.Кордонский, Я. П. Лумельский, С. X. Сираждинов, М.И.Эй-дельнант, Б.Хенсен и др. [11, 77, 121, 129,139, 146, 185, 188, 218, 227, 262, 263].

СПК осуществляется как по количественному, так и по альтернативному признаку. Контроль по количественному признаку информативнее и поэтому для одного объёма партии требует меньшего объёма выборки, чем контроль по альтернативному признаку. Однако в условиях массового производства экономичность последнего служит причиной его широкого применения.

На базе контроля по альтернативному признаку разработаны несколько систем формирования планов СПК. Американский стандарт ABC - STD - 105D основан на определении приёмочного уровня дефектности и риска изготовителя а [160]. Здесь а - вероятность забракования партии продукции, обладающей приёмочным уровнем дефектности.

X. Ф. Додж и X. Д. Роминг разработали планы СПК на основе браковочного уровня дефектности LQ. (q6) и риска потребителя [31]. В России В. А. Лапидусом разработана система СПК на основе принципа распределения приоритетов [140]. Изготовитель планирует СПК по заданным значениям предельного уровня дефектности и риска потребителя, в одностороннем порядке задавая величину среднего уровня дефектности и риска изготовителя. Потребитель планирует свои планы СПК по заданным значениям входного уровня дефектности и риска изготовителя. Именно этот принцип положен в основу ГОСТ Р 50779.52-95 [41] при условии гарантии приближённого равенства приёмочного и браковочного уровней дефектности.

На условии равенства AQL (средний выходной уровень дефектности) и LQ, работает и система альтернативного контроля [48], основанная на минимизации значений объёмов выборок и приемочных чисел с целью снижения стоимости контроля и повышения его оперативности. В данной системе предусмотрено использование планов СПК с приёмочным числом меньше трёх.

В.А.Лапидус [142] отмечает, что статистические методы играют огромную роль в промышленности и экономике. В США и ФРГ статистический контроль стал органической частью экономической системы регулирования качества. Одна из важнейших составляющих частей "японского чуда" - широкое внедрение статистических методов в промышленность, в то время как в России все еще не осознали их принципиальной важности.

Статистические методы являются базисом новой культуры управления, позволяющей вывести производство на качественно новый уровень.

Некоторым недостатком этих методов является сложность, использование трудноусваиваемых разделов математики, отсутствие наглядности для неспециалистов, что можно кардинально изменить широким применением современных компьютерных систем.

Огромный вклад в развитие статистических методов внесли российские и зарубежные ученые Н.А.Бородачев, Н.А.Гаврилов, Л.К.Сизенов, Н.С.Райбман, Я.И.Лукомский, Н.Дрейпер, Г.Смит и др. [ 14, 15, 16, 43, 46.49, 57, 99, 145, 176, 177]. Практическое применение изложено в работах [3, 4, 5, 7, 99, 102, 125, 137, 154, 162, 191, 198, 200, 201, 212, 218, 221, 232 И др.]. Методика расчета и выбора планов контроля приведена в [34, 146, 151, 152, 226, 272, 276].

Для целей контроля и управления ТП необходимо, во-первых, иметь математическую модель процесса, описывающую взаимосвязи между технологическими параметрами; во-вторых, необходимо знание законов распределения контролируемых параметров, необходимых для оценки уровней брака; в-третьих, для окончательного контроля произведенной продукции применяются планы статистического приемочного контроля.

Для построения модели ТП используются, в основном, методы корреляционного анализа, которые дают достоверные результаты только в том случае, когда соблюдаются следующие условия:

- модель линейна;

- все параметры, включенные в модель, имеют нормальное распределение.

Если эти условия не выпонены, то получаемые с помощью модели результаты не могут быть адекватно проанализированы, числовые характеристики не дают никакой информации о реальных связях и практически невозможно построить доверительные интервалы оцениваемых параметров.

Как отмечается в работах Н. С. Райбмана, В.М.Чадеева [177] и В.И.Городецкого [61], корреляционные модели не дают надежных результатов. В.И.Городецкий и другие авторы [61, 68, 101, 224, 264] предлагают использовать в качестве меры связи информационные меры. Их достоинство заключается в том, что они позволяют создавать адекватные модели простой структуры независимо от распределения контролируемых параметров и сложности функциональной связи.

При определении закона распределения наибольшее распространение получил критерий Пирсона X2, хотя структура его такова, что он дает достоверные результаты только при решении вопроса о нормальности распределения.

Как показано в работах [3, 67, 197] ряд новых критериев типа энтропийной погрешности [ 158 ] не имеют ни удовлетворительного теоретического обоснования, ни достаточной мощности.

Планы статистического приемочного контроля рассчитываются исходя из распределения Пуассона числа дефектных изделий в выборке, которое является приближением гипергеометрического распределения. Таким образом, расчеты, проводимые на этой базе, могут привести к ошибкам. Возникающие погрешности настолько велики [81], что невозможно гарантировать необходимое качество. Завышение рисков Поставщика и Потребителя приводит к большим неоправданным затратам.

В настоящее время в стране используются два основных стандарта на статистический приемочный контроль по альтернативному признаку, а именно: ГОСТ 18242-72 [ 34 ], предназначенный для применения внутри предприятия, а также при проведения независимой экспертизы качества, и новый ГОСТ Р 50779. 52-95 [ 41 ], используемый для выходного контроля при приемке партии изделий.

Планы ГОСТ 18242-72 построены с применением принципа нарастания приёмочного числа. Чем меньше объём партии и АЦЬ, тем больше планов СПК с нулевым приёмочным числом. С увеличением АЦЬ - объём выборки для постоянного приемочного числа уменьшается. Объём выборки увеличивается с ростом объёма партии для постоянного АОЬ. Таким образом мы можем сделать вывод о том, что планы контроля рассчитаны исходя из вычислительных возможностей, а не интересов потребителя и изготовителя. Следствием отсутствия функциональной связи между объёмом партии и объёмом выборки является высокий средний объём контроля . Планы с нулевым приёмочным числом не удовлетворяют требованиям производителя так как чрезмерно ужесточают требования к качеству продукции.

Планы ГОСТ Р 50779.52-95 рассчитаны на максимальное удовлетворение интересов заказчика, оставаясь на уровне заданного риска потребителя. Для удовлетворения тех требований, которые возникают при использовании этих планов, производитель вынужден поддерживать качество продукции на существенно более высоком уровне, чем это необходимо потребителю. Следует отметить, что данный стандарт не рассчитан на массовое или крупносерийное производство, так как он предоставляет планы СПК для продукции с объёмом партии до 1200 штук. Для партий с числом из

- 27 делий от 1200 штук и выше предоставлен единственный план контроля, таким образом погрешности расчётов повышаются с ростом числа изделий в партии. Кроме того, этот стандарт еще не апробирован в промышленности, методики расчетов планов по этому стандарту остались прежними.

Разработка АСУ качеством в настоящее время на разных этапах требует применения различных методов математической статистики, не связанных друг с другом, не имеющих возможности использования данных одного этапа в других, что приводит к усложнению системы и увеличению материальных затрат.

Высокая производительность современных автоматических линий приводит к тому, что процессы измерений и обработки данных, выработка и реализация управляющих решений, занимающие несколько минут, запаздывают и приводят к появлению брака, которого возможно избежать в случае применения безынерционного способа управления.

По мнению автора, единым образом описать все этапы построения и функционирования АСУ качеством и избежать указанных выше недостатков позволяет математическая теория информации.

1.3. Состояние научной проблемы

В предисловии к книге С.Кульбака [136] А.Н.Комогоров писал: ". аналитический аппарат теории информации был создан тогда, когда здание математической статистики было в своих основных, находящих наиболее широкое применение, частях уже построено и кодифицировано. Но новые мысли и аналитический аппарат теории информации дожны, по-видимому, привести к заметной перестройке этого здания."

Информация, в точно определенном смысле впервые была введена в статистике Р.Фишером [265]. К.Шеннон [222] и Н.Винер [23] независимо друг от друга опубликовали в 1948 г. работы, в которых были описаны логарифмические меры информации для использования их в теории связи. Их труды стимулировали огромное количество исследований в технических кругах на темы теории информации.

Математическая теория энтропии, в основу которой легли фундаментальные работы Клода Шеннона, была создана трудами таких выдающихся математиков, как А.Н.Комогоров [119, 124], А.Я.Хинчин [214, 215], И.М. Гельфанд [44, 45] и другие. Эта теория явилась примером плодотворного эоздействия прикладных задач на развитие фундаментальных направлений математики.

В целом сформировася новый подход в разных областях науки и техники, который можно назвать "энтропийным подходом".

Теорию информации можно рассматривать как ветвь математической теории информации и математической статистики. В этом качестве она применяется в целом ряде областей, таких как неравновесная статистическая механика, информационная теория систем, физика, теория управления и другие [178, 179, 184, 189, 225, 209]. В настоящее время активно развивается новая ветвь математики - математическая теория энтропии [см. например, 148].

Теория информации позволяет унифицировать известные результаты теории статистических выводов, что наглядно показано в работе С.Кульбака [136].

Что касается идей теории информации, то они вырастают из понятия беспорядка или энтропии в термодинамике и статистической физике [136]. Р.В.Л.Хартли [211, 269] определил меру информации как логарифм числа возможных последовательностей символов для использования в технике связи.

Информация всегда выступает как методологическая основа для обобщения и упрощения. Хотя существует много трактовок понятия информации [147], нет единого определения этого понятия. Наиболее общее и непротиворечивое определение информации можно дать, исходя из другого важного системного понятия - организованности. Организованность - это понятие относительное, рассматриваемое в отношении какого-либо базиса (эталон, порядок, цель) [233]. Ю.М.Горский [63, 64] определяет информацию как атрибут материи, выступающий, с одной стороны, как характеристика организованности материи, а с другой - как средство ее организации.

Философским проблемам информации в современной науке посвящены очерки А.Д.Урсула [203].

В современной статистической теории информации формула количества информации выражает то разнообразие, которое один объект содержит о другом. Исходным понятием в теории информации считается понятие условной энтропии объекта X при заданном У - Н(Х/У), которое можно интерпретировать как количество информации, необходимое для задания объекта X в обстановке, ког

-ЗОда объект У уже задан [136, 224].

Р. Л.Стратонович [194] отмечает, что в настоящее время в теории информации слились три дисциплины:

- статистическая термодинамика как математическая теория;

- шенноновская теория информации;

- теория оптимальных статистических решений.

Информационная мера Шеннона-Винера является универсальной статистикой. Так, в работе [267] доказана эквивалентность дисперсионного и информационного анализов, а в [231, 257] -что мощность статистики Н не уступает мощности X2-статистики.

Отправной точкой, давшей возможность применять статистику Н при решении прикладных задач, явились статья Г.П.Башарина [10], показавшего, что эта статистика имеет асимптотически нормальное распределение, а также работы Т. А. Азларова, Р.Муха-медхановой [2, 155] и А.М.Зубкова [104], обобщающие его результаты.

Можно утверждать, что в настоящее время происходит становление не только понятия информации, но и связанного с ним общенаучного метода исследования - теоретико-информационного.

Работы У.Эшби [233] о возможности разнообразного построения кибернетики можно считать отправной точкой теории управления и моделирования. Он показал, что процесс связи можно интерпретировать как передачу информации, а управление - как ограничение разнообразия. К.Шеннон [222] подчеркивал, что с информацией можно обращаться почти так же, как и с физическими величинами - массой, энергией.

Основополагающей по информационной теории управления является работа Б.Н.Петрова и др. [163]. В работе А.В. Солодова [189] излагаются общие информационные условия управления технологическими процессами. В работах [157, 199] показано применение классической теории информации к задачам автоматического управления и контроля.

Вопросы, связанные с принятием решений изложены в работах [136, 169].

В работе В.И.Рабиновича [174] для оценки степени изо-морфности модели реальному объекту введена информационная мера изоморфности, равная количеству информации, содержащейся во входной величине X о выходной величине Y.

Весьма важным вопросом, который возникает в начале создания любой системы управления, является определение предельных возможностей предполагаемой динамической системы. Основная задача управления состоит в точном или приближенном (с заданной точностью) обеспечении требуемых состояний ТП или их последовательности при переменных значениях внешних воздействий. Возможность обеспечения требуемой последовательности во времени и определяет задачу о предельных возможностях динамической системы. Эти вопросы рассматривались P. J1. Добрушиным [98] и Б.Н.Петровым и др. [163. 166, 202].

В.И.Николаев [157] описал систему контроля и управления судовыми энергоустановками с применением методов теории информации. И.С.Райбман и В.М.Чадеев [177] в основу исследований положили баланс энтропий различных воздействий в исследуемой системе, отразили основные условия управления ТП.

А. С.Поспелов и В.А.Ириков [171] рассмотрели вопросы практического применения информационных методов. В работах [22, 107, 108, 158, 174] изложены теоретико-информационные методы для оценки процессов и средств измерения и контроля. Выяснению смысла и ценности информации посвящены работы [12, 18,

27, 94, 95, 157, 193, 195, 196, 219, 231, 255].

Особый интерес представляет статья Б.Н.Петрова и др. [164]. В этой работе на основе введенного И. Д.Кочубиевским [130] порога различимости состояний объекта управления проводится анализ общих условий управления технологическими процессами с использованием представлений теории информации.

Управление, согласно [164], сводится к двум задачам: стабилизации и воспроизведению. Стабилизация состояний в заданной области, являющееся основой всякого управления, может быть трактована как ограничение разнообразия возможных состояний, а пределы управления ТП всегда ограничены пропускной способностью (управляемостью) объекта, осуществляющего технологический процесс.

В системах автоматического управления объект управления (технологический процесс) является одним из основных источников информации. Поэтому следует оценить многообразие состояний ТП и его изменение при управлении.

Предполагается, что состояние объекта управления либо моделирования может характеризоваться разнообразием, которое может быть ограничено потребительским порогом различимости [130], а также различными шумами. Порог различимости состояний является сложной по своей природе объективной характеристикой, зависящей как от объекта управления, так и от окружающих условий. Он имеет некоторое экстремальное значение и его уменьшение до нуля невозможно.

Введение порогов различимости - это один из примеров упрощения систем в процессе исследования, когда выделяется наиболее существенное для управления разнообразие и происходит отвлечение от несущественного, причем это упрощение базируется на объективных обстоятельствах. Без введения порога различимости пришлось бы иметь дело с бесконечным числом состояний, что теряло бы всякий практический смысл.

Любой параметр объекта управления всегда обнаруживает такие два значения, которые будут неразличимы с точки зрения системы управления и поэтому их отличие несущественно для процесса управления. Следовательно, всякое разнообразие состояний объекта всегда конечно. Именно поэтому в основу информационной теории управления следует положить понятие состояния объекта с той неопределенностью, какая имеет место в реальных физических системах.

Информационный подход, базирующийся на принципах дискретизации и разнообразия, дает возможность выделить главное, существенное в сложных технических системах.

В работе [164] определяются информационные основы управления технологическими процессами с учетом потенциальных возможностей объекта как источника и как канала передачи информации.

Вопросы применения теории управления на основе теории информации в организации систем автоматического контроля рассматриваются в работах [64, 100, 136, 158, 175].

Энтропийный подход используется во ВНИИНМАШ, где информационные меры применяются для исследования усталостных разрушений и оценки ресурса изделий на основе введения информационно-энтропийного пространства как новой вычислительной структуры* [182, 183].

В работе [220] интуитивное понятие "качества" обобщается и численно оценивается через энтропию Шеннона.

Синтез байесовского подхода и принципа максимума энтропии

- 34 рассматривается Б.А.Абдрашидовым [1].

Информационная теория моделирования, как составная часть теории управления, определяет условия подобия целей, информационных структур, информационных потоков (по качеству и ценности информации), а также подобия информационных функций преобразователей информации в узлах управления [65]. Основная цель построения информационной теории моделирования - анализ и синтез сложных систем [224], построение информационно-оптимальных машинных систем.

В работах [63, 103, 153, 256] эффективность функционирования системы связывается с количеством информации, вносимой в контур управления, а также с затратами на информационную часть системы.

Анализ литературы, посвященной информационной теории управления, приводит к выводу, что ". информационный подход дает единую точку зрения на все виды управления, независимо от его цели и типа управления системы" [163].

Теория информации, как и статистическая физика, благодаря своим методам и обобщениям позволяет исследовать объекты сложной природы на относительно простых и наглядных математических моделях [163, 164].

Простота и универсальность методов теории информации дали сильный точок к использованию их в различных областях техники.

В работах В.Г.Григоровича, С.В.Юдина [81, 254] разработана теория применения статистики Н (энтропии распределения) для решения ряда задач управления и контроля качества в массовом производстве.

Отправными пунктами послужили работы С.Кульбака [136],

Г.П.Башарина [10] и Т.Б.Шеридана и У.Р.Феррела [224].

В работе [224] показана возможность оценки взаимосвязей технологических параметров при помощи понятия энтропии, а в [10] было доказано, что энтропия имеет нормальное распределение. Обобщение этих результатов в [ 2, 81, 155, 264 ] дало возможность получать не только точечные, но и интервальные оценки как самой энтропии, так и параметров, определяемых на ее основе.

Универсальность понятия "информация" и "энтропия", являющиеся мерами организованности и взаимной связи, жесткая необходимость квантования, представленная в работе Х.Хармута [209], связь с классической термодинамикой, приведенная в работах [178, 244], дают основания полагать, что методы математической теории информации являются не просто полезными абстрактными моделями, но и адекватным описанием объективной реальности.

Универсальность информационного подхода, его высокая мощность и надежность получаемых результатов, простота анализа моделей подтверждается исследованиями, проводимыми в Тульском государственном университете на протяжении 20 последних лет. В работах В.Г.Григоровича [ 66, 68, 81 ], Н.О.Козловой [ 115 ], А.С.Горелова [ 59 ], Н. А. Кораблиной [ 126 3 и других [ 62, 97, 104, 119, 120, 122, 123, 144, 148, 157, 158, 159, 167, 168, 194, 224, 225, 271 ] получены важные результаты, дающие основания для создания универсальной теории управления качеством продукции массового автоматизированного производства на базе единой статистики - информационной меры Шеннона-Винера.

1.4. Информационный подход к управлению качеством

1.4.1. Статистические характеристики энтропии

В статье Клода Шеннона "Математическая теория связи" [222] впервые была введена количественная мера неопределенности, связанная со случайными событиями, названная энтропией. Достаточно быстро это понятие переросло теорию и практику связи и стало с большим успехом пользоваться во многих отраслях математики. Ее применение к динамическим системам А.Н.Комогоровым и Я.Г.Синаем [119, 128, 186, 187] привело к поному решению проблемы эргодической теории, к введению нового инварианта гладких динамических систем и уточнению некоторых положений классической статистической механики [148, 178].

Термин "энтропия" впервые был использован Р.Клаузиусом в 1864 г. в его книге "Сочинения по теории теплоты" для обозначения величины, характеризующей процессы перехода тепловой энергии в механическую. Связь между энтропией как мерой неопределенности и термодинамической энтропией достаточно дого оставалась неясной, но в последнее время она была установлена [148].

Согласно К.Шеннону энтропией Н называется величина к

Н = h = - X pi-lnpi, ( 1.1 )

1=1 где рi - вероятность г-го состояния дискретной случайной величины X, к - количество состояний величины X.

Показано [136 и др.], что эта величина неотрицательная и достигает максимума при равновероятном распределении.

Статистическую оценку случайной величины Н можно получить из выражения К

Н* = - X р*1'1пр*1, ( 1.2 )

1-1 где р*1=/1/п - частости, а А - частоты наблюдения случайной величины X в г-м состоянии; п - объем выборки; к - количество состояний.

Как было показано Г.П.Башариным [10] и обобщено А.М.Зуб-ковым [104] и Т.А.Азларовым и Р.Мухамедхановой [2], при достаточно общих предположениях, в том числе и в предположении о стремлении количества состояний к бесконечности, статистическая оценка энтропии ( 1.2 ) имеет асимптотически нормальное распределение с параметрами г М(Н*) = П - (к-1)/п

I ЭОЛ = (а2-Тг2)/п

Здесь к а2 = X р1 1п2р1. ( 1.4 )

Параметры Н и а2 в дальнейшем будем называть энтропийными параметрами распределения.

Исключение из нормальности на практике возможно только в случае равновероятного распределения случайной величины X. Тогда оценка энтропии будет иметь X2-распределение.

При изучении технологических процессов приходится иметь дело не с дискретными, а с непрерывными распределениями случайных величин, характеризующих технологические параметры, как то: размеры изделий, вес и т.д. В этом случае формулы (1.1.1.4) непосредственно неприменимы. Выход из положения дают работы таких авторов как И.Д.Кочубиевский и др. [ 130. 132 ] и X.Хармута [209].

X.Хармут в своей работе "Теория секвентного анализа" отмечал, что ". всегда можно выпонить только конечное число измерений. Кроме того, если мы хотим провести измерения в различных точках пространства и времени, то расстояние между этими точками дожно быть конечным." [210, гл.4]. Это утверждение дает возможность обосновать необходимость дискретизации непрерывных случайных величин.

И. Д. Кочубиевский [130] ввел необходимость дискретизации с другой стороны. Он показал, что если не производить дискретизацию, то мы вынуждены будем иметь дело с бесконечным числом состояний, бесконечной информацией, которую, в принципе, невозможно обработать. С другой стороны, любые приборы имеют конечную точность измерений, т. е. мы все равно не сможем различать состояния, отличающиеся друг от друга на величину менее разрешающей способности прибора. Более того, с точки зрения теории управления, не всегда нужно вмешиваться в процесс, даже если он отклоняется от его идеальной модели.

Пусть непрерывная случайная величина X имеет функцию плотности f(x). Разобьем пространство значений этой величины на конечное число к интервалов А: (Xii,3Ci), где х (г=1с) -граничные точки интервалов.

Пусть р1гр2,.,Рк - значения вероятностей попадания значений случайной величины в интервалы . ,к:

Энтропия дискретизированной величины определяется по формуле ( 1.1 ).

Рассмотрим следующий параметр непрерывного распределения:

П = - Г(х)1п/(х) йж 1.6 )

В работах [12, 1193 показано, что энтропия Н дискретной величины, полученной из непрерывной, связана с параметром Н соотношением где с = Дэс - ширина интервала дискретизации.

Формула ( 1.7 ) включает в себя логарифм размерной величины Ах. С физической точки зрения логарифм размерной величины не определен, поэтому следует избегать подобных выражений. Кроме этого, размерная величина меняется с переходом от одной системы единиц к другой, так что логарифм ее численного значения будет зависеть от единиц измерения. Оба этих замечания приводят к мысли о том, что при информационном анализе случайных величин необходимо абстрагироваться от единиц измерения, исключить их из всех возможных выражений.

В дальнейшем, если не сделано особых оговорок, все исследуемые случайные величины считаются имеющими единичную дисперсию и безразмерными. Это всегда можно сделать, введя новую случайную величину

Все результаты, полученные для нормированных случайных величин без ограничения общности распространяются на любые случайные величины.

Введем еще один параметр нормированной случайной величины:

Н = П - 1п 8, 1.7 ) у = ж/б 1.8 )

00 2 а fix) - In2-f(x) dx ( 1.9 )

В работах [235, 77] показано, что статистическая оценка энтропии дискретизированной и нормированной случайной величины имеет нормальное распределение с параметрами: мал = и \ 1

D(Н*) = - (а2 - П2) п 1.10 )

Статистические исследования, проведенные на ЭВМ ЕС-1033, ЕС-1045, ПЭВМ IBM РС/АТ-486 [68, 81, 126] с использованием пакетов программ BMDP [258], IMSL [270] и SSP [149, 172, 173], подтвердили эти результаты.

При проведении исследований использовались методы и расчетные формулы, приведенные в справочных руководствах и монографиях таких авторов, как Кендал М.Дж., Стьюарт А. [109.111], Фихтенгольц Г.М. [205], Фелер В. [204], Полард Дж. [170], и др. [8, 56, 213, 217, 223].

1.4.2. Информационная модель технологического процесса

Идея информационного моделирования основана на представлении технологической цепи в виде информационного канала, в который поступает информация о заготовке и затем последовательно преобразуется в информацию о готовой детали (рис. 1.1).

Для случая, когда заготовка определяется одним параметром, информационная взаимосвязь между межоперационными параметрами ТП определяется системой уравнений:

I(Х1-у) = Н(Х1) + Н(у) - Н(хьу)

1(Х2^у/Х1) = Н(хьх2) + Н(хьу) - Н(Х2,Хьу)

КХп-1-^у/Х!. .хп-г) = Н(ХЬХ2>. ,хп1) + ЖХьХг,. .Хп-ьУ) 1.11)

- Н(Х!,Х2. .хп2)

- Н(ХЬХ2> . . .Хп2, У) Степень влияния преобразуемого после каждой операции параметра X на параметр У оценивается с помощью коэффициента информационной связи ф

КХх^у/Х!----,Х!!)

Х^У/Х!, . . . ,Х!1)

Н(у) 1.12)

Если на технологической операции происходит формирование одновременно нескольких параметров, система уравнений для описания информационных взаимосвязей между параметрами несколько изменится. Например, для случая формирования на одной операции трех параметров (рис. 1.2) информационное взаимодействие между ними может быть описано следующими соотношениями:

1(х-у) = Н(х) + н(у) - Н(х,у) 1(х-*г) = Н(х) + Н(г) - Н(х,г) 1(у-г) = Н(у) + Ш) - Н(у,г) 1(х,у-г) = Н(х, у) + Н(г) - Н(х,у,г) I(у.г-х) - Н(у,ъ) + Н(г) - Н(х,у,г) 1(г,х-*у) = Н(г,х) + Н(у) - Н(х,у,г) 1.13)

1(Х2->Хз) х1;) 1 *2 э 2 Хз> X п-1>жп) п-1 п-1

1(х1 -> у)

Рис. 1.1. Предсталение технологического процесса в виде информационного канала.

I / 'И1- ' **Л ИЛ- ' "Л

2> - 1(х,г->у), q(x,z->y); (3) - 1(х,у->г), я(х5у->г).

Рис. 1.2. Схема информационного взаимодействия для случая трех параметров.

Для количественной оценки информационной взаимосвязи предложены коэффициенты информационной взаимосвязи:

I(х-у) q(x-y) q(x-z) = q(y-z) = q(x, y-*z) = q(y, z-x) = q(z, x-y) =

H(y) I(x-*z) H(z) I(y-z) H(z)

I(X,y-Z)

H(z) Ky. z-x)

H(x) I(z,x-y) H(y) 1.14)

Обобщение полученных результатов на I параметров может быть выражено системой уравнений

I(Xi. . .Xii-Xi) = H(Xi. . -Xi-t) + H(Xi) -H(Xi.Xi)

I(Xi. . .Xi-rXi) q(X!.Xii-Xi) =

H(X] 1.15)

В работах F.Attneave [257] и A. von Eye [264] показано, что эмпирическая информация 1*(х-у) с точностью до постоянного множителя имеет X2-распределение:

2Ш* = Хт ( 1.16 )

Здесь т = (k^l) (кг-1) - количество степеней свободы; klt кг - количество интервалов разбиения входного и выходного параметров соответственно; п - объем выборки.

Информация, передаваемая от одного параметра к другому, считается значимой, если

2flI ^ Хщ , а , 1.17 )

2 2 где Хщ.о - а-квантиль %т-распределения; а - доверительная вероятность.

В этом случае считается также значимым и коэффициент информационной связи д*.

При количестве степеней свободы т > 25.30 распределение Пирсона может быть приближено с достаточной степенью точности нормальным распределением с дисперсией б2 = 2т [ 232 ]. Тогда доверительный интервал для информации определяется из следующих неравенств:

2пГ - а|/2т < 2п1 < 2пГ + Ьа\/2т ( 1.18 ) или

Ьа\/2т а|/2т

--< I < I* + --( 1.19 )

Здесь а - доверительная вероятность, Ьа - а-квантиль нормального распределения.

Т.к. коэффициент информационной связи определяется из уравнения

Г(Х-У) ЧЧ, ( 1.20 ) Н* (У) а энтропия Н*(У) может быть точно определена, если известно распределение случайной величины У, то доверительный интервал для д определяется следующим образом: ta^/2m Ьа\/2т I*--I* + -

2 п 2 п q < -Ч ( 1.21 )

Н(У) Н(У)

Нерешенным остается вопрос о применении коэффициента информационной связи в качестве меры определености процесса, как, например, может быть использован квадрат коэффициента корреляции в регрессионных моделях.

Определение закона распределения случайной величины по опытным данным наряду с построением модели занимает одно из центральных мест при обработке результатов эксперимента статистическими методами.

Традиционный подход при решении задачи сводится к расчету параметров эмпирического распределения, принятию их в качестве оценок параметров генеральной совокупности с последующей проверкой сходимости эмпирического распределения с предполагаемым теоретическим по критериям X2 (Пирсона), X (Комогорова), а)2

Такой подход имеет следующие недостатки: зависимость методики обработки результатов эксперимента от предполагаемого теоретического распределения, большой объем вычислений.

Б.Е.Янковский [256] предложил информационный способ определения закона распределения. Суть его состоит в следующем: если имеется выборка с распределением частостей р*ьр*2,., р\, то энтропия гипотетического распределения дожна совпадать с энтропией эмпирического распределения при верной нулевой гипотезы, т.е. дожно выпоняться равенство

1.4.3. Информационный критерий определения закона распределения случайной величины

28]. п 1.22)

00 где ръ - теоретическая вероятность распределения случайной величины X.

Этот метод имеет тот недостаток, что, во-первых, нет оценки допустимого расхождения между эмпирической оценкой энтропии и ее теоретическим значением; во-вторых, в то время как в формуле ( 1.22) слева находится безразмерная величина, справа находится интеграл, имеющий размерность исследуемой величины. Отсюда, кроме того, следует, что результаты анализа выражения ( 1.22) будут зависеть от системы единиц измерения, применяемых в конкретном случае.

В.Г.Григорович [66] предложил видоизмененный метод, основанный на сравнении частотных энтропий теоретического и теоретического распределений. Несмотря на наличие меры расходимости, предложенный метод не поностью исключает зависимость от единиц измерения.

Позже был предложен [77, 81 ] новый информационный критерий определения закона распределения непрерывных случайных величин.

Предположим, что пространство значений непрерывной случайной величины X разбито на конечное число к частей (интервалов) А: (ЗС1-1,Ж1), где х1 (г=0.к) - граничные точки интервалов. Пусть р!,р2,.,рк - соответствующие значения вероятностной функции, так что к р! = Р^еО; Г р! = 1. ( 1.23 )

Как было показано выше, система X, имеющая конечное число состояний, характеризуется неопределенностью, величина которой определяется мерой Шеннона-Винера (энтропией) (1.1).

Оценка энтропии Н* (1.2) имеет нормальное распределение с параметрами и и а2, определяемыми по формулам (1.6), (1.9). Рассмотрим величину дж

Н* - и + 1пЧ бх --( 1.24 ) а2 - Нг п

Здесь а2, Н - энтропийные параметры предполагаемого теоретического распределения; Дж - ширина интервалов разбиения области изменения случайной величины X; бх - среднее квадрати-ческое отклонение её; п - объем выборки.

При совпадении эмпирического распределения с предполагаемым теоретическим распределение параметра будет гауссовым с дисперсией, равной единице и нулевым математическим ожиданием.

Выбор предельного значения Зс, при котором оценка энтропии Н* дожна находиться внутри доверительного интервала, зависит от выбранного уровня значимости а. Можно найти из известного соотношения [135]:

Р(ис|л1-о) - Ф( 1 -а) ( 1-25 ) где

Ф() у2ж функция Лапласа.

Ю / ^ бх - (1.26

Преимущество предлагаемого метода определения закона распределения перед существующими заключается в том, что при смене гипотезы нет необходимости пересчитывать теоретические частоты. Достаточно знать энтропийные параметры и и а2, значения которых для 13 классов распределений приведены в работе

Т.к. эмпирическая энтропия Н* не зависит от выдвигаемой гипотезы, то можно проверять одновременно несколько гипотез без увеличения объема вычислений.

Следует отметить, что информационный критерий использует интегральные характеристики распределения, которые постоянны для всего класса распределений. Именно вид кривой распределения, а не точечные оценки (такие как среднее, среднее квадра-тическое отклонение, коэффициенты асимметрии и эксцесса), играющие важную, но ограниченную роль, определяет энтропийные параметры.

Использование этого критерия ограничено тем, что не разработана программа для ЭВМ, не проведен сравнительный анализ с другими критериями.

1.4.4. Статистический контроль качества

Планы статистического приемочного контроля качества продукции в настоящее время широко применяются в промышленности. С 1997 г. в действие вступили стандарты группы 50779 [37.41], основанные на международных стандартах ИСО 9000 [42, 150]. Эти стандарты допоняют, но не отменяют ранее действовавшие стандарты по контролю и управлению качеством продукции, такие как ГОСТ 18242-72 [34], ГОСТ 20736-75 [35], ГОСТ 22248-76 [36].

Государственный стандарт России 50779.52-95 [41] устанавливает условия статистического приемочного контроля.

ГОСТ 18242-72 [ 34 ] не отменяется и может применяться при контроле потребителем и (или) третьей стороной. При этом приемочный уровень дефектности (АОЬ) при выборе плана контроля устанавливается равным нормативному уровню несоответствия (N010. Риск потребителя устанавливается исходя из уровня доверия.

В соответствие с новым стандартом ГОСТ Р 50779.52-95 [41] максимальный размер партии, который может быть при контроле - 1200 штук, т. е. все партии с объемом выборки более 1200 имеют одинаковые планы контроля. Учитывая специфику многих отраслей промышленности, в которых объемы партии достигают десятков тысяч и даже милиона, данный подход может привести к ошибкам при контроле качества.

Широко применяются методы непрерывного выборочного контроля. Теоретические основы непрерывного выборочного контроля (НВК) были заложены А.Вальдом [208] и Х.Ф.Доджем [ 261 ]. На основе теоретического подхода Х.Ф.Доджа Я.Б.Шор и А.А.Пахомов [ 228.230 ] предложили использовать процедуру одностадийного выборочного контроля (0НВК-1), учитывающий требования Поставщика и Потребителя.

План ОНВК-1 заключается в следующем:

1 - сплошной контроль изделий до тех пор, пока не будет принято г изделий подряд;

2 - если г изделий подряд приняты, то контролируется только /-я часть изделий (К1/2);

3 - если выборочное изделие бракованное - переход к сплошному контролю.

К недостаткам данного плана контроля можно отнести следующее:

1 - отсутствует учет накопленной информации;

2 - периодически требуется проводить сплошной контроль изделий, что возможно только при малой производительности.

План последовательного анализа А.Вальда заключается в следующем.

В координатах (й,п). где п - количество контролируемых изделий, й - количество обнаруженных бракованных изделий, строятся приемочная и браковочная кривые: где Б, Н0, определяются по формулам, приведенным в [20, 226].

Пусть проконтролировано п изделий. Если обнаружено, что количество дефектных изделий й>йб(п), то партия бракуется; если й<йп(п) - партия принимается; если йп(п)<й<йб(п) - испытания продожаются.

Недостатком последовательного анализа А.Вальда может быть тот факт, что возможна ошибка при малых объемах выборки, т.к. в этом случае велика дисперсия любого оцениваемого параметра.

К недостаткам существующих методов расчета планов контроля можно также отнести чрезмерную усложненность последующих оценок, отсутствие реальных возможностей управлять процессом.

Одним из самых серьезных недостатков существующих планов контроля, как отмечено в работе Глазунова А.В., Кочеткова Е.П., Лапидуса В.А. [ 50 ], является наличие, в некоторых случаях, нулевого приемочного числа. Равное нулю приемочное число - это, в основном, чисто политические, спекулятивные обещания. В этих случаях контроль либо не позволяет получить достоверную информацию, либо приходится контролировать выборку, сравнимую по объему с объемом партии, что лишает смысла само понятие йп(п) = 3-п - Н0 йб(п) = Б-п - П1 1.27) выборочный контроль".

В.Г.Григорович [68] усовершенствовал методику расчета планов СПК на базе методов теории информации, однако не были получены аналитические связи между параметрами плана контроля и объемом партии, а также рассмотрены не все варианты.

Для целей регулирования ТП применяется стандартная методика статистического оценивания контролируемого параметра [ 226 ]. При помощи данных измерений определяются среднее и среднее квадратическое отклонение технологического параметра; по заранее рассчитанным таблицам определяется соответствие их эталонным значениям, на основе чего принимается решение о необходимости вмешательства в технологический процесс.

Недостатком существующего метода контрольных карт является большое временное запаздывание.

В то же время, как показано в работах [59, 62, 68, 81, 97, 104, 115, 119, 120, 122, 123, 126, 144, 148, 157, 158, 159, 167, 168, 194, 224, 225, 271], возможно поное или частичное разрешение указанных противоречий и недостатков на основе информационно-статистического подхода.

Большую работу провели В.Г.Григорович [68] и Н.О.Козлова [115], развившие идеи анализа точности и стабильности ТП на базе альтернативных оценок. Тем не менее, в их работах нет обоснования надежности получаемых результатов, отсутствует исследование статистических характеристик оценок и их сравнении с обычными оценками.

Следует также отметить возможность нетрадиционного подхода, основанного на границах контроля, не совпадающих с границами поля допуска, а существенно более узких (метод АКУД). Как отмечено в работах В.Г.Григоровича, Н.О.Козловой, М.И.Розно,

С.В.Юдина [68, 81, 115, 74, 180], узкие, по сравнению с полем допуска, границы контроля являются более информативными и позволяют снизить объем выборки при одновременном повышении надежности получаемых результатов.

1.5. Цель и задачи работы

Анализ современного состояния методов управления качеством продукции крупносерийного и массового производства позволяет утверждать о существовании противоречия, связанного с высокой степенью автоматизации производства, непрерывностью технологического процесса, и дискретным характером контроля и управления. В результате снижается реальная производительность комплексно-автоматизированных производств, что особенно наглядно видно на примере производства БСО [68]. Отсутствие современных средств измерения, функционирующих с производительностью, сравнимой с производительностью АРЛ, не позволяет управлять процессом в реальном масштабе времени. Это приводит к увеличению уровня брака, повышению трудоемкости контроля и снижению экономической эффективности производства.

Решение проблемы возможно путем разработки нового математического аппарата теории управления качеством, основанного на идеях и методах математической теории информации.

Выше было показано, что информационно-статистические методы обладают высокой надежностью, оперативностью, и, самое главное, используют на всех этапах анализа системы, контроля и управления единую статистику - энтропию распределения. Это позволяет унифицировать методики расчета, использовать данные одного этапа на последующих.

Тем не менее, до сих пор не решен ряд проблем.

Так, при анализе точности ТП, рассмотренном в диссертационных работах В.Г.Григоровича [68] и Н.О.Козловой [115], нет обоснования надежности получаемых результатов, отсутствует исследование статистических характеристик оценок и их сравнении с обычными оценками.

Не рассмотрен вопрос применения альтернативных оценок при моделировании ТП, несмотря на то, что было показано, что эти оценки являются надежными и не требуют длительных измерений.

Отсутствует стройная система расчета планов статистического приемочного контроля. Рассмотрены лишь частные случаи, не проведено поное исследование надежности результатов контроля. Не используется метод АКУД (применение более узких, чем поле допуска, границ контроля), отсутствует система последующих оценок.

До сих пор не разработан комплекс программ, охватывающий все стадии системы управления качеством.

Ни в одной работе, рассмотренной выше, нет стройной научной, методологической системы построения АСУ качеством. Рассматриваются лишь отдельные этапы, отсутствуют необходимый комплекс программ и методик.

Сложившееся состояние информационной теории управления определили основную цель уаботы - создание научных основ информационных методов управления качеством продукции массового производства, позволяющих решить важную народнохозяйственную задачу - повышение эффективности производства машиностроения и других отраслей промышленности за счет разработки системы информационно-статистических методов контроля и управления качеством продукции, всемерной унификации применяемых статистик и методик расчета, перевода всех расчетов на ЭВМ.

Достижение этой цели предполагается путем решения следу-щих задач:

1 - разработка и теоретическое обоснование новых методов контроля и управления качеством продукции массового и крупносерийного производства;

2 - проведение статистических исследований и сравнительного анализа предлагаемых методов;

3 - разработка комплекса агоритмов и программ, предназначенных для решения задач управления качеством;

4 - разработка методического обеспечения системы управления качеством;

5 - расчет таблиц планов контроля, доверительных интервалов входного уровня дефектности.

В основу решения задач положены математическая теория информации, информационная теория управления и методы математической статистики. В работе использованы результаты теоретических и экспериментальных исследований, проводившихся под руководством и при непосредственном участии автора в период с 1979 по 1994 г. Ряд теоретических результатов был получен в 1995. 98 г. г.

Результаты работы отражены в 44 публикациях (в том числе в 2-х монографиях).

2. Теоретические основы информационно-статистических методов управления технологическими процессами 2.1. Постановка задачи

Построение и анализ модели технологических процессов -один из основных этапов разработки системы управления качеством.

Любое воздействие на технологический процесс может осуществляться лишь при наличии информации о существующих взаимосвязях, знании об откликах технологических параметров на это воздействие. Эта информация и знания обслуживающего персонала являются одной из простейших форм модели процесса. При автоматизации процесса управления данная информация дожна быть переведена на математический язык с целью агоритмизации процесса управления.

Результаты, полученные при моделировании процесса, дают основную информацию о происходящих процессах, структуре взаимосвязей, узловых точках процесса, оказывающих основное влияние на формирование изделия и его качества. Не имея модели, невозможно предсказать поведение процесса, что лишает всякой возможности управлять процессом. Точная и надежная модель позволяет оптимизировать схему контроля и управления, минимизировать расходы на управление и, тем самым, снизить себестоимость изделий при одновременном повышении качества.

Как было показано выше, стандартные методы построения и анализа модели процесса обладают рядом недостатков, такими как ограничение вида распределения параметров процесса, входящих в модель, только нормальным распределением; возможная функциональная связь предполагается линейной (несмотря на ряд методов, учитывающих нелинейные взаимодействия, практически невоз

- 56 можно в этом случае построить доверительные интервалы).

Для оценки статистических параметров процесса используются трудоемкие методы, требующие больших временных и трудовых затрат.

Во многих случаях производительность автоматических линий настолько велика, что контроль размерных параметров изделий практически невозможен. В настоящее время нет датчиков, которые могли бы измерять точное значение линейных размеров со скоростью 180 и выше измерений в минуту, в то время как производительность АРЛ и АРКЛ давно превзошла эту границу. Таким образом, возникает противоречие между процессом контроля, который занимает много времени и не может быть осуществлен для всех изделий, и технологическим процессом изготовления, для управления которым необходима информация о текущем состоянии потока изделий.

В любой момент времени для управления ТП необходима информация об основных статистических характеристиках потока изделий, а именно, значение центра группирования (среднее значение) размера и его среднее квадратическое отклонение. Знание этих параметров совместно с информацией о законе распределения дает возможность вычислить текущий уровень брака и принять решение о необходимости вмешательства в ТП в случае превышения им допустимого значения. Временные характеристики этих числовых параметров также важны для управления ТП, т.к. дают возможность проследить за поведением процесса и вмешаться в него до того как уровень брака превзойдет допустимый уровень.

Методы теории информации дают возможность, используя данные только предельного (альтернативного) контроля, т.е. такого контроля, когда определяется только выход значений параметров за установленные границы, получить необходимую для анализа и управления информацию. Такой контроль требует намного меньше времени, может быть автоматизирован, что отчасти уже имеет место на АРЛ и АРКЛ, где используются контрольные роторы предельного контроля.

Контрольная карта - основной элемент статистического регулирования технологических процессов изготовления продукции на автоматических роторных линиях. Ее параметрами являются: объем выборки, т.е. количество изделий отбираемых для контроля; периодичность контроля; границы регулирования, служащие для принятия решения о состоянии ТП.

Статистическое регулирование ТП основано на контроле по альтернативному признаку. Поэтому о состоянии ТП судят по числу обнаруженных дефектных единиц продукции. В качестве границы регулирования используется приемочное (или браковочное) число. Увеличение числа дефектных изделий свидетельствует о разладке процесса.

Контроль параметров изделий при помощи предельных калибров, настроенных на поле допуска, применяемый в настоящее время, не является оптимальным с точки зрения теории информации. Как показано в работах [74, 81, 89, 91, 243 и др.], суженные, по сравнению с границами поля допуска, границы контроля являются более информативными, что позволяет получать более точные оценки с меньшим объемом выборки.

При этом методы теории информации позволяют разработать простой и надежный агоритм оценки параметров процесса.

В работах [60, 69, 71, 72, 75.91, 235.244, 247] показана широкая применимость методов математической теории информации ко всем задачам теории управления качеством, а также

- 58 возможность унификации методов решения этих задач.

В связи с этим в главе 2 поставлена следующая цель: разработать и теоретически обосновать информационные методы управления технологическим процессом на основе данных предельного (альтернативного) контроля.

Для реализации указанной цели рассмотрены следующие задачи:

- обосновать возможность применения информационного критерия определения закона распределения (раздел 2.2);

- обосновать возможность применения коэффициента информационной связи в качестве меры определенности процесса (раздел 2.3.);

- разработать систему оценки статистических параметров ТП на основе данных предельного контроля (раздел 2.4);

- разработать практическую методику использования предельных информационных оценок при построении контрольных карт (раздел 2.5);

- разработать теоретические основы и методику построения информационно-статистической модели ТП на базе данных предельного контроля (раздел 2.6);

- разработать методику регулирования ТП на основе информационно-статистической модели (раздел 2.7);

- оценить минимальный объем выборки, необходимый для целей анализа и управления (раздел 2.8).

2.2. Сравнение информационного критерия и критерия Пирсона в задачах определения закона распределения

С целью оценки надежности и мощности информационного критерия было проведено его сравнение с критерием Пирсона X2.

Значения критерия Пирсона рассчитывались по следующей формуле:

К * 2 к * 2 2 У (V! - V 1) у (пр4 - V*!)2

X2 = Ь - = Ь --, ( 2.1 )

1=1 V! 1=1 ПР1 где рх - теоретические вероятности попадания значений X в г-й интервал;

Vх - теоретические частоты попадания значений X в г-й интервал;

V*! - эмпирические частоты попадания значений X в г-й интервал.

Нулевая гипотеза о совпадении эмпирического распределения, характеризуемого параметрами V*! (1=1.к) и Н*, с теоретическим предполагаемым, характеризуемого параметрами VI (1=1.к) и и, а2, принимается, если

3С\ < ^ ( 2.2 ) или

X С Хщ с(, ( 2.3 ) где а - доверительная вероятность; - а-квантиль нормального распределения; т - количество степеней свободы X2-распределения.

При невыпонении неравенств (2.2) или (2.3 ) нулевая гипотеза отвергается.

Сравнение мощности критериев осуществлялось в несколько этапов.

1). Т.к. моделирование на ЭВМ дает возможность получить только усеченные распределения, то предварительно производися расчет энтропийных параметров и и а2 усеченных распределений по общим формулам: к h = - Z pi-lnpi,- ( 2.4 )

1=1' а2 = L Pi Х ln2Pi,- ( 2.5 ) f(x)dx

Pi = -Ч. ( 2.6 ) f(x)dx

Здесь x0 - минимальное значение, которое может принимать случайная величина X; сск - её максимальное значение; f(x) -функция плотности вероятности непрерывной случайной величины X; х0, Жь . .зск - граничные точки интервалов разбиения, причем

AXi = Xi - Xt-i = Ах = 1 ( 2.7 )

При генерации случайных чисел дисперсия задавалась равной единице.

Анализ проводися для шести классов распределений: нормального, Релея, Максвела, экспоненциального, модуля нормального центрированного и Вейбула. Для нормального распределения количество интервалов разбиения к=6, границы генерации определялись параметрами сс0=-3, ж6=+3; для остальных - К=5, хо=0,

2). Генерировалась последовательность случайных чисел с заданным распределением. а). С помощью датчика псевдослучайных чисел URAND [и-112] генерировалась последовательность чисел (j=l,2,3,.), имеющая равновероятное распределение на интервале (0;1). б). Рассчитывалось число х*:

X = Xq + j 3CQ ) {j~l, 2,3,.). в). Определялось значение f(x) при х=х*. г). Число з+1 сравнивалось с числом С: С = f(x*)/fmax, где /max - максимум функции f(x). д). Если < С, то число х* принадлежит к генеральной совокупности с плотностью f(x).

Если J + 1 > С, то число х* отбрасывается. Переход в п. а).

3. Для заданного объема выборки производились расчеты гистограмм: а). v*i=0 (1=1.к); з=0. б).

Определяется номер интервала t=int (эс* л-зс0)+1. Здесь lnt(z) - целая часть числа z. в). vVvVi иДет накопление частот. г). Если з<п - переход в п. б).

Если з=п - конец.

4). При помощи формул ( 2.23 ) и ( 2.24 ) рассчитываются значения критериев Jc и X2 соответственно, которые сравниваются С ta И X m , <х

Количество степеней свободы распределение Пирсона определялось как т=к-1, где I - количество наложенных связей.

Для закона Гаусса т=3; для законов Релея и Максвела т=2 пришлось объединить два последних интервала); для экспоненциального распределения, распределения Вейбула и модуля нормального т=3.

Для каждого типа распределения генерировалось по сто выборок объемом п = 50; 100; 200; 500.

Программа расчетов была реализована на языке программирования ФОРТРАН-IV.

Результаты расчета на ЭВМ приведены в табл. 2.1. Числа, приведенные в таблице, указывают, сколько выборок из 100 были отвергнуты при проверке нулевой гипотезы критериями Зс и X2 соответственно. Индексы, которые имеют обозначения критериев, расшифровываются следующим образом: первый индекс указывает номер закона распределения, которому подчиняется генерируемая последовательность чисел; второй индекс - номер гипотетического закона распределения, с которым сравнивается эмпирическое распределение.

Законы распределения пронумерованы следующим образом:

1 - закон Гаусса;

2 - закон Релея;

3 - закон Максвела;

4 - экспоненциальный закон;

5 - модуля нормального центрированный;

6 - закон Вейбула с параметром К=1.5.

Табл. 2.1 показывает, что мощность информационного критерия такая же, как у критерия Пирсона, в то время как вероятность отвергнуть верную гипотезу несколько ниже.

Преимущество предлагаемого метода определения закона распределения перед существующими заключается в том, что при смене гипотезы нет необходимости пересчитывать теоретические

Таблица 2.1.

Результаты сравнения информационного критерия 1с и X2-критерия в задаче определения закона распределения а=0.90 а=о. 95 п п

50 100 200 100 200 500

Зс 11 11 20 9 2 0 2 к 11 26 30 27 8 1 10 зг 12 99 100 100 99 100 100

Хк 1 2 100 100 100 100 100 100

Jf 13 98 99 100 98 100 100 гк 13 100 100 100 100 100 100

Г 14 98 99 100 98 100 100 к '14 100 100 100 100 100 100

Зс 2 1 100 100 100 100 100 100

Хк '2 1 100 100 100 100 100 100

Jr 22 11 И 13 2 0 1

X" 22 22 21 22 6 2 6

Jf 3 1 99 100 100 100 100 100

Хк 31 100 100 100 100 100 100 зз 13 7 16 0 4 2

X' 'зз 21 И 21 2 2 2

4 1 99 100 100 100 100 100

X' '41 100 100 100 100 100 100 г ;44 8 7 8 1 4 0

X' "44 13 18 16 4 2 1

Таблица 2.1 Окончание а=о. 90 а=о.95 п п

50 100 200 100 200 500

А- 15 98 99 99 100 100 100 99 99 99 100 100 100

16 X 16 99 100 100 100 100 100 99 100 100 100 100 100

X, 25 98 100 100 100 100 100 98 100 100 100 100 100

Л- 26 98 100 99 100 100 100 98 100 100 100 100 100

X 35 100 100 100 100 100 100 100 100 100 100 100 100

X зб 95 100 99 100 100 100 100 100 100 100 100 100

45 X 46 99 100 100 100 100 100 100 100 100 100 100 100

55 X 55 10 15 5 9 5 15 1 2 1 2 1 1

56 X 56 99 100 100 100 100 100 100 100 100 100 100 100

66 X 66 о и 11 п 1 13 о и 10 л 1 3 о о 2 0 1 а - доверительная вероятность.

Диссертация: заключение по теме "Экономика стандартизации и управление качеством продукции", Юдин, Сергей Владимирович

- 294 -Общие выводы и результаты

В диссертационной работе решена научная проблема, имеющая важное народнохозяйственное значение, заключающаяся в повышении эффективности массового и крупносерийного производства за счет разработки новых информационно-статистических методов управления качеством продукции, снимающих существующее противоречие между высоким уровнем организации технологических процессов в современных автоматизированных производствах с массовым и крупносерийным выпуском продукции и неэффективной системой управления, повышающих экономическую эффективность производства, приводящих систему управления качеством продукции к современным требованиям.

В результате работы установлено: 1. Исследование современного комплексного автоматизированного крупносерийного и массового производства и системы обеспечения качества продукции, сложившейся в нем, а также комплекса методик, стандартов и методов математической статистики, применяемого для целей контроля и управления, вскрыло основное противоречие между прогрессивным уровнем производственного процесса изготовления продукции, в основе которого лежит принцип непрерывности и поточности производства, и дискретным характером системы управления, имеющей также большое временное запаздывание, нарушающим этот принцип. В результате снижается эффективность производства, увеличиваются экономические затраты на обеспечение качества продукции.

2. Основная проблема управления качеством продукции массового и крупносерийного комплексного автоматизированного производства заключается в отсутствии единого подхода к решению задач моделирования, анализа и управления, отсутствии адекватных математических методов исследования ТП и обработки данных текущего и приемочного контроля, большой временной задержке. Решение проблемы возможно на основании синтеза методов теории информации и математической статистики.

3. Разработан комплекс информационно-статистических методов управления качеством продукции массового производства, позволяющий повысить экономическую эффективность производства, снизить затраты на обеспечение качества, повысить качество продукции, привести систему управления качеством к требованиям стандартов.

4. Установлено, что статистическая оценка энтропии непрерывных случайных величин является универсальной статистикой, которая может быть использована для решения всех задач теории управления качеством.

5. Доказана правомочность использования информационного критерия определения закона распределения.

6. Доказано, что коэффициент информационной связи является мерой определенности процесса.

7. Разработан новый метод анализа точности и стабильности ТП, основанный на данных предельного контроля. Показано, что коэффициент корреляции результатов, полученных новым методом, с результатами, полученными стандартными методами математической статистики, достигает 0.95.0.99. При этом трудоемкость процесса измерений и расчетов, время анализа данных снижаются в несколько раз.

8. Теоретически обоснован и экспериментально проверен информационный критерий значимости изменения состояния ТП.

9. Разработана методика расчета контрольных карт, основанных на информационно-статистических оценках математического ожидания и дисперсии.

10. Разработана новая информационная модель ТП, основанная на данных предельного контроля. Разработана методика ее использования для регулирования ТП.

11. Получена информационная математическая модель контроля, на базе которой разработан новый метод расчета планов приемочного статистического контроля по альтернативному признаку, учитывающий одновременно требования поставщика и потребителя, включающий в расчетные формулы объем партии, что было невозможно на основании прежних методов. Доказано, что оперативная кривая информационного плана контроля более точно отражает объективную реальность по сравнению с кривыми стандартных планов контроля, рассчитанных на основе распределения Пуассона. Показано, что для входных параметров плана контроля существует минимальный объем выборки, при несоблюдении которого невозможно оценить качество партии.

12. Разработан принципиально новый информационный план контроля с регулируемыми границами, позволяющий на основе априорной информации о распределений дефектных изделий существенно снизить объем выборки при сохранении требуемых характеристик плана контроля.

13. Разработан план последовательного контроля, основанный на использовании кривых постоянного риска.

14. Предложен новый метод расчета планов контроля, основанный на использовании интегральных рисков поставщика и потреби

- 297 теля, позволяющий уменьшить объем контроля и гарантировать качество единичной партии.

15. Предложена система последующих оценок входного уровня дефектности.

16. Создана научная база разработки и унификации систем управления качеством продукции массового производства. Разработаны новые агоритмы, программы и методики, позволяющие решать любые задачи управления качеством продукции.

В целом разработаны основы информационно-статистической теории управления качеством продукции КАП, созданы практические предпосыки использования ее в промышленности.

Ряд методик и программ внедрены на предприятиях ОАО ПО "Тульский патронный завод" и ОАО ОКТБ "Ротор" (г.Тула) и использованы для рекомендаций по итогам выпонения НИР 1 57204/080, 1992 г., ПО "ТПЗ"; № 57302/085, 1993 г., ПО "ТПЗ"; 1 57306, 1993 г., ПО "ТПЗ"; 1 57201/080, 1992 г., ПО "ТПЗ"; 1 43.11К9, 1993 г., программа "Конверсия научно-технического потенциала ВУЗов России"; I 57.09КВТ, 1994-96 г.г., программа "Конверсия и высокие технологии".

Ряд результатов диссертационной работы используется в учебном процессе при изучении курса "Математическая статистика" (разделы, связанные с контролем качества).

По результатам исследований опубликовано 44 работы, в том числе 2 монографии.

Диссертация: библиография по экономике, доктор технических наук , Юдин, Сергей Владимирович, Тула

1. Абдрашидов Б.М. Фидуциально-энтропийный подход к планированию контрольных испытаний на надежность // Надежность и контроль качества. 1993. - № 8. - С. 8-17

2. Азларов Т.А., Мухамедханова Р. Класс предельных распределений статистической оценки энтропии в полиномиальной схеме// ДАН СССР, т. 264, 1982, 4,с. 5

3. Айвазян С.А. и др. Прикладная статистика: Основы моделирования и первичная обработка данных: Справочное издание. /С.А.Айвазян, И. С.Енюков, Л.Д.Мешакин; Под ред. С.А.Айвазяна. М. : Финансы и статистика, 1983. - 472 с.

4. Айвазян С. А. и др. Прикладная статистика: Исследование зависимостей: Справочное изд. /С.А.Айвазян, И. С. Енюков, Л.Д. Мешакин; Под ред. С.А. Айвазяна. М.: Финансы и статистика, 1985. - 487 с.

5. Алабин М.А., Райбман А.Б. Корреляционно-регрессионный анализ статистических данных в двигателестроении. М.: Машиностроение, 1974. - 124 с.

6. Андрукович П.Ф. Применение метода главных компонент в регрессионном анализе // "Заводская лаборатория", 1970, 3, с. 312-316.

7. Афифи А., Эйзен С. Статистический анализ. Подход с использованием ЭВМ. М.: Мир, 1982. - 488 с.

8. Барра Ж.Р. Основные понятия математической статистики. -М. : Мир, 1974. 275 с.

9. Бахно А.Л., Юдин C.B., Григорович В.Г. Информационный метод анализа состояния технологической операции //Известия Тульского государственного университета. Сер. Машиностроение. - Том 1. - Выпуск 1. - 1997. - С. 168-175.

10. Башарин Г.П. О статистической оценке энтропии независимых случайных величин// "Теория вероятностей и ее применения", 1956, т. IY, К 3, с. 361-364- 299

11. И. Беляев Ю.К. Вероятностные методы выборочного контроля. -М.: Наука, 1975. 408 с.

12. Бончард М.М. Проблема узнавания. М.: Наука, 1967

13. Боровков A.A. Математическая статистика: Оценка параметров. Проверка гипотез. М.: Наука, 1984. - 472 с.

14. Бородачев H.A. Анализ качества и точности производства. -М.: Машгиз, 1946

15. Бородачев H.A. Основные вопросы теории точности производства. М.-Л.: АН СССР, 1950

16. Бородачев H.A. Математические представления закономерностей хода рабочих процессов основа комплексной автоматизации. // Автоматизация процессов в машиностроении, т.3 М.: АН СССР, 1966

17. Браунли К. Статистическая теория и методология в науке и технике. М.: Наука, 1977. - 407 с.

18. Брилюэн Л. Наука и теория информации. М.: Физматгиз, 1960. - 392 с.

19. Бусленко Н.П. Моделирование сложных систем. М.: Наука, 1978. - 460 с.

20. Вальд А. Последовательный анализ. М.: Физматгиз, 1960. - 327 с.

21. Вентцель E.G., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. М.: Наука, 1991. - 383 с.

22. Вильсон А.Д. Энтропийные методы моделирования сложных систем. М.: Наука, 1978. - 252 с.

23. Винер Н. Кибернетика, или управление и связь в животном и машине. М.: Наука, 1983. - 340 с.

24. Владимиров В.Я. Технологические основы активного контроля в автоматических роторных линиях //Дис. на соискание ученой степени канд. техн. наук. Тула: ТПй, 1970. - 194 с.- 300

25. Владимиров В.Я. Пути внедрения статистического контроля качества изготовления патронов на автоматических роторных линиях. / Журн. М-ва СССР, 1973. Серия ХХШВып. 6. -С. 71-76.

26. Владимиров В. Я., Глыбин Ю.А., Синюгин А.й., Фролович E.H. Бригадная форма обслуживания с применением статистических методов контроля и управления качеством. М.: ЦНИИинфор-мации, 1973. - 60 с.

27. Войтвило Е.К. Попытка семантической интерпретации статистических понятий информации и энтропии.//Кибернетику на службу коммунизму. М. -JI.: Энергия, 1966

28. ГОСТ 11.006-74. Правила проверки согласия опытного распределения с теоретическим. М.: Изд-во стандартов, 1975. - 25 с.

29. ГОСТ 15467. Управление качеством продукции. Основные понятия. Термины и определения. М.: Изд-во стандартов, 1981. - 26 с.

30. ГОСТ 15893-77. Статистическое регулирование технологических процессов при нормальном распределении контролируемого параметра. М.: Стандарты, 1977. - 40 с.

31. ГОСТ 15895-77. Статистические методы управления качеством продукции. Термины и определения. М.: Изд-во стандартов, 1986. - 45 с.

32. ГОСТ 16467-70. Статистические показатели точности и стабильности технологических операций. Методы расчета. М.: Изд-во стандартов, 1971

33. ГОСТ 16504-81. Система государственных испытаний продукции. Испытания и контроль качества. Основные термины и определения. М.: Стандарты, 1982. - 28 с.

34. ГОСТ 18242-72. Статистический приемочный контроль по альтернативному признаку. Планы контроля. М.: Изд-во стандартов, 1987 - 51 с.- 301

35. ГОСТ 20736-75. Качество продукции. Статистический приемочный контроль по количественному признаку при нормальном распределении контролируемого параметра. М.: Изд-во стандартов, 1975 - 94 с.

36. ГОСТ 22248-76. Статистическое регулирование технологических процессов методом кумулятивных сумм числа дефектов или числа дефектных единиц продукции. М.: Стандарты, 1977. - 19 с.

37. ГОСТ Р 50779.0-95. Статистические методы. Основные положения. М.: Госстандарт России, Издательство стандартов, 1995. - 5 с.

38. ГОСТ Р 50779.30-95. Статистические методы. Приемочный контроль качества. Общие требования. М.: Госстандарт России, Издательство стандартов, 1995. - 30 с.

39. ГОСТ Р 50779.50-95. Статистические методы. Приемочный контроль качества по количественному признаку. Общие требования. М.: Госстандарт России, Издательство стандартов, 1996.

40. ГОСТ Р 50779.51-95. Статистические методы. Непрерывный приемочный контроль качества по альтернативному признаку.- М.: Госстандарт России, Издательство стандартов, 1996.

41. ГОСТ Р 50779.52-95. Статистические методы. Приемочный контроль качества по альтернативному признаку. М.: Госстандарт России, Издательство стандартов, 1996. - 230 с.

42. ГОСТ Р ИСО 9001-9003 96 Системы качества. Модель для обеспечения качества при проектировании и разработке, при производстве и монтаже, при окончательном контроле и испытании. - М.: Изд-во стандартов, 1996.

43. Гаврилов А.Н., Сизенов Л.К. Построение математических моделей для расчета точности технологического оборудования.- "Стандарты и качество", 1967, I 6, с. 25-36, 9, с. 19-28.- 302

44. Гельфанд И.М., Комогоров А. Н., Яглом А.М. К общему определению количества информации. Докл. АН СССР, 1956, 111, № 4, с. 745-748.

45. Гельфанд И.М., Яглом A.M. О вычислении количества информации о случайной функции, содержащегося в другой такой функции. Успехи мат. наук, 1957, 12, №=3, с. 3-52.

46. Гербуз В.И. Об эволюции концепции Доджа-Ромига в планировании приемочного статистического контроля качества изделий. // Надежность и контроль качества. 1993. - Is 4. -С. 33-44.

47. Гербуз В.И. Обеспечение требуемого уровня начальной параметрической надежности изделий //Надежность и контроль качества. 1994. - Ш 5. - С. 47-53.

48. Гербуз В.И., Рабен П.И. К вопросу введения допонений в ГОСТ 18242 72 // Надёжность и контроль качества. -1989. - Ш 10. - с. 47 - 53.

49. Гербуз В. И., Шестакова Н. И. Статистический приёмочный контроль качества изделий в условиях системы бездефектного труда // Стандарты и качество. 1967. - № 4. - с. 32 - 46.

50. Глазунов А.В., Кочетков Е.П., Лапидус В.А. О нормировании уровня несоответствий в партиях продукции. Проблема "ноль дефектов". // Надежность и контроль качества. 1995. - 1 12. - С. 38-44.

51. Гласс Дж., Стенли Дж. Статистические методы в педагогике и психологии. М.: Прогресс, 1976

52. Глушков В.М. Введение в кибернетику. Киев: АН УССР, 1964. - 324 с.

53. Глыбин Ю.А. Разработка и внедрение методов управления качеством продукции в производств боеприпасов стрекового оружия. Дис. . канд. техн. наук. - Тула, ТПИ, 1983. -187 с.- 303

54. Глыбин Ю.А., Григорович В.Г., Юдин C.B. Прогнозирование качества изделий в условиях непрерывного поточного производства. / Журн. М-ва СССР. 1983 серия XXIII, вып. 3(46). С.27-31

55. Глыбин Ю. А., Поселенов JI. И., Сишогин А. И., Парышкура М.И., Никольский B.C. Система управления качеством изделий в условиях непрерывного поточного производства// В сб.: Вопросы оборонной техники, серия XXIII, вып 1981, с. 16-25

56. Гнеденко Б. В. Курс теории вероятностей. М.: Наука, 1988. - 448 с.

57. Гнеденко Б.В., Беляев Ю.К., Соловьев А.Д. Математические методы в теории надежности. М.: Наука, 1965. - 524 с.

58. Головинский В. В. Статистический контроль качества за рубежом. М.: Машгиз, 1957. - 150 с.

59. Горелов A.C. Интенсификация процессов контроля деталей, изготавливаемых на роторных линиях штамповочного производства. Дисс. . канд. техн. наук. - Тула: ТПИ, 1986. - 226 с.

60. Городницкий С.Р. Апроксимация законов распределений случайных величин методом минимума меры Кульбака-Лейблера //Надежность и контроль качества. 1993. - № 9. - С. 3-6.- 304

61. Горский Ю.M. Информационный анализ управления// Оптимизация и управление в больших системах энергетики. Т.1. -Иркутск: Изд-во АН СССР СОСЭИ, 1970

62. Горский Ю.М. Информационные аспекты управления и моделирования. М.: Наука, 1978. - 223 с.

63. Горский Ю.М., Горская Н.И. Некоторые вопросы информационного моделирования и программирования больших систем// Кибернетика и моделирование больших систем энергетики. -М.: Наука, 1972

64. Григорович В.Г. Вопросы контроля и анализа точности изделий, изготавливаемых на автоматических роторных линиях. -Дис. .канд. техн. наук. Тула: ТПИ, 1975. -240 с.

65. Григорович В. Г. Методика определения закона распределения информационных способом// Технология машиностроения. Вып. 36. Исследования в области технологии мех. обработки и сборки машин. Тула, ТПИ, 1974. - с.129-136

66. Григорович В.Г. Информационное сопровождение технологических процессов автоматизированных производств. Дис. . докт. техн. наук. - Тула: ТуПИ, 1992. - 312 с.

67. Григорович В. Г., Глыбин Ю. А., Сидоров В.М., Юдин C.B., Горелов A.C. Информационное моделирование технологических процессов комплексно-автоматизированных производств. / Журн. М-ва СССР, 1983. серия XIII. - Вып. 4(47). -С.20-28.

68. Григорович В.Г., Горелов A.C., Юдин C.B. Информационный метод определения межоперационных допусков// Исследован в области безлюдной технологии гибких производственных и комплексно-автомат систем. Тула, ТПИ, 1985, вып. 2(10). - С. 89-93

69. Григорович В.Г., Горелов A.C., Юдин C.B., Минаева Л.И. Совершенствование системы контроля в комплексно-автоматизированных производствах. /Журн. М-ва СССР. 1986. Вып.3(58). С. 12-16.

70. Григорович В.Г., Горелов A.C., Юдин C.B., Минаева Л.И. Проблемы и перспективы контроля в производстве БСО. //Журн. М-ва СССР. 1988. Серия XIII. - Вып. 2. - С. 43-46.

71. Григорович В.Г., Козлова И.О. Устойчивое оценивание центра группирования размеров при альтернативном контроле качества продукции КАП // Вопросы оборонной техники, 1994. Серия XIII. - Вып. 1-2 (88-89) - С. 42-44.

72. Григорович В.Г., Козлова Н.0., Юдин C.B. Информационные методы статистического регулирования технологических процессов. Оптимальные контрольные карты.//Вопросы оборонной техники, серия XIII, 1996. Принята в печать.

73. Григорович В.Г., Сидоров В.М., Горелов A.C., Юдин C.B. Информационная модель технологического процесса изготовления патрона.// Журн. М-ва СССР. 1984. серия XIII -Вып. 4(47). - С. 17-24.

74. Григорович В.Г., Юдин C.B. Информационный метод определения закона распределения. Тула, ТПИ, 1982, 1 - Рукопись деп. в ВИНИТИ, № 2766-82 ДЕП.

75. Григорович В.Г., Юдин C.B. Информационный метод моделирования технологических процессов. Тула, ТПИ, 1983, - Рукопись деп. в ВИНИТИ, № 4547-83 ДЕП.

76. Григорович В.Г., Юдин C.B. Разработка планов контроля в условиях массового поточного производства на о информационной меры Шеннона-Винера. Тула, ТПИ, 1984, 6 с. - Ру- 306 копись деп. в ВИНИТИ, Ш 3310-84 ДЕП.

77. Григорович В.Г., Юдин C.B. Сравнение мощности информационного критерия и критерия Пирсона в задачах определения закона распределения непрерывных случайных величин. Тула, ТПИ, 1984 6с. - Рукопись деп. в ВИНИТИ, M 3309-84 ДЕП.

78. Григорович В.Г., Юдин C.B. Информационное обеспечение технологических процессов. М.: Машиностроение, 1992. -144 с.

79. Григорович В.Г., Юдин C.B., Горелов A.C. Математическое описание технологических процессов методами теории информации// Тез. докл. Материалы Всеросс. сем. "Построение моделей и моделирование сложных технических объектов". Тула, ТПИ, 1984, с.49.

80. Григорович В.Г., Юдин C.B., Горелов A.C. Информационно-статистические методы управления качеством продукции /Материалы 3-й Всес. конф. "Перспективы и опыт внедрения статистических методов в АСУ ТП". Тула: ТуПИ, 1987. -С. 26-27.

81. Григорович В.Г., Юдин C.B., Горелов A.C. Математическое описание технологических процессов методами теории информации /Построение моделей и моделирование сложных технических объектов. Тула: ТуПИ, 1984. - С. 49.

82. Григорович В.Г., Юдин C.B., Пейчинов Д.Г. Анализ точности и стабильности технологических процессов информационными методами. /Седма национана младежка школа с международно участие. Пловдив, Дом на науката и техниката, 1989. -С. 16.

83. Григорович В.Г., Юдин C.B., Козлова И.О. Контроль по альтернативному признаку оптимального состояния технологического процесса //Оптимизация производственных процессов. Франция, Россия, Украина. - Севастополь, 1995. -С. 67-69.

84. Григорович В.Г., Бахно А.Л. Юдин C.B. Метод прогнозирования состояния технологических процессов на базе теории информации //Кузнечно-штамповочное производство. 1997. - № 10. - С. 35-38.- 308

85. Григорович В.Г., Н.О.Козлова, Юдин C.B. Информацион-но-статиотические методы регулирования технологических процессов // Кузнечно-штамповочное производство. 1998.- M 12. С.

86. Гришанин Б.А., Стратонович Р.Л. Ценность информации и достаточные статистики при наблюдении случайного процесса- Изв. АН СССР, "Техническая кибернетика", 1966, № 6.

87. Гришанин Б.А., Стратонович Р.Л. О ценности информации //Всесоюзный симп. по статистическим проблемам в технической кибернетике. М., 1967. - С. 47-53.

88. Дальский М.М. Технологическое обеспечение надежности высокоточных деталей машин. М.: Машиностроение, 1975. -223 с.

89. Денисов A.A. Информационные основы управления / Библиотека по автоматике. Вып. 635. Л.: Энергоатомиздат, 1983.

90. Добрушин Р.Л. Общая формулировка основной теоремы Шеннона теории информации //УМН, 1959. T. XIV, вып. 6. - С. 3-104.

91. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. -М. : Статистика, 1973. 392 с.

92. Дубицкий Л.Д. К оценке эффективности систем автоматического контроля //Измерительная техника. 1963. - I 7.- С. 17-20.

93. Елисеева И. И. Группировка, корреляция, распознавание образов: (Стат. методы классификации и измерения связей).- М.: Статистика, 1977. 173 с.

94. Закс Л. Статистическое оценивание. М.: Статистика, 1976. - 598 с.

95. Зубачева Н.И. Синтез систем управления дискретного производства по критерию ценности информации: Автореферат дис. . канд. техн. наук. М. : МЭИ, 1970- 309

96. Зубков A.M. Предельные распределения статистической оценки энтропии //Теория вероятностей и ее применение. -1973. Т. XVIII. - Вып. 3. - . 643-650.

97. Иларионов О.И. Обнаружение разладки технологического процесса с помощью х карт по нескольким выборкам //Надежность и контроль качества. 1992. - Ш 12. - С. 21-28.

98. Иларионов О.И. Расчет рабочих характеристик двойных х,s контрольных карт при фиксированной вероятности годных изделий. // Надежность и контроль качества. - 1994. - № 4. - С. 19-27

99. Кавалеров Г.И., Мандельштам С.М. Введение в информационную теорию измерений. М.: Энергия, 1974. - 376 с.

100. Карандеев К.В., Цапенко Н.П. Измерительные информационные системы. В кн.: Информация и кибернетика. - М.: Сов. радио, 1966.

101. Кендал М.Дж., Стьюарт А. Т.1. Теория распределений. -М.: Наука, 1966. 587 с.

102. Кендал М.Дж., Стьюарт А. Т.2. Статистические выводы и связи. М.: Наука, 1975. - 736 с.

103. Кендал М.Дж., Стьюарт А. Т.З. Многомерный статистический анализ и временные ряды. М.: Наука, 1976.

104. Клусов И.А. Проектирование роторных машин и линий. М.: Машиностроение, 1990. - 320 с.

105. Кнут Д. Е. Искусство программирования. Т.2. Получисленные агоритмы. М.: Мир, 1977. - 670 с.

106. Коган И.М. Прикладная теория информации. М.: Радио и связь, 1981. - 216 с.

107. Козлова Н.0. Информационный метод контроля в комплексно-автоматизированном производстве. Дис. . канд. техн. наук. - Тула: ТГУ, 1995 г. - 164 с.

108. Кокрен У. Методы выборочного исследования. М.: Статистика, 1976. - 440 с.- 310

109. Кокс Д., Снел Э. Прикладная статистика. Принципы и примеры. М.: Мир, 1984. - 200 с.

110. Кокс Д., Хинкли Д. Теоретическая статистика. М.: Мир, 1976. - 540 с.

111. Комогоров А. Н. Теория информации и теория агоритмов. -М. : Наука, 1987. 304 с.

112. Комогоров А.Н. Три подхода к определению "количество информации". //Проблемы передачи информации. 1965. - Т. 1, Ш 1. - С. 3-11.

113. Комогоров А. Н. Несмещенные оценки //Изв. АН СССР, сер. матем., 14, 4, 1950. С. 303-326.

114. Комогоров А.Н. К логическим основам теории информации и теории вероятностей //Проблемы передачи информации, 1969, т. 5, 1 3, с. 3-7.

115. Комогоров А.Н. Комбинаторные основания теории информации и исчисления вероятностей //УМН, 1983, т. 38, вып. 4, с. 27-36.

116. Комогоров А.Н., Тихомиров В.М. Е-энтропия и Е-емкость множеств в функциональных пространствах. Успехи мат. наук, 1959, 14, № 2, с. 3-86.

117. Контроль качества с помощью персональных компьютеров /Т.Макино, М.Охаси, Х.Докэ, К.Макино. М.: Машиностроение, 1991. - 224 с.

118. Кораблина H.A. Разработка информационных методов анализа точности и стабильности технологических процессов производства БСО. Дисс. . канд. техн. наук. - Тула: ТПИ, 1988. - 212 с.

119. Корн Г., Корн Т. Справочник по математике. Для инженеров и научных работников. М. : Наука, 1975. - 831 с.

120. Корнфельд И.П., Синай Я.Г., Фомин C.B. Эргодическая теория. М. : Наука, 1980.- 311

121. Коуден Д. Статистические методы контроля качества. М.: Физматгиз, 1961. - 624 с.

122. Кочубиевский И.Д. Принцип порога различимости в определении количества информации и построении математических моделей технических и биологических объектов //Вопросы технической кибернетики. Владивосток, ДВФ СО АН СССР,1966.

123. Кочубиевский И.Д., КозминА.Г., КозминаЭ.А., Красовский В. П. К общей постановке задачи о потенциальных возможностях системы управления //Информационные методы в системах управления, измерения и контроля. Владивосток, ДВФ СО АН СССР, 1968.

124. Кочубиевский И.Д., Король Е.В., Попова Е.К. Введение меры разноообразия процессов управления //Информационные методы в системах управления, измерения и контроля. Владивосток, ДВФ СО АН СССР, 1968.

125. Кошкин JI.H. Комплексная автоматизация производства на базе роторных линий. М.: Машиностроение, 1972. - 352 с.

126. Кошкин Л.Н. Роторные и роторно-конвейерные линии. М.: Машиностроение, 1982. - 336 с.

127. Крамер Г. Математические методы статистики. М.: Мир, 1975. - 648 с.

128. Кульбак С. Теория информации и статистика. М.: Наука,1967. 408 с.

129. Кумэ X. Статистические методы повышения качества,- М.: Финансы и статистика, 1990. 227 с.

130. Кутай А.К. Справочник по производственному контролю в машиностроении. М.: Машиностроение, 1974. - 407 с.

131. Кутай А.К., Кордонский Х.Б. Анализ точности и контроль качества в машиностроении. М. -J1.: Машгиз, 1958. - 362 с.

132. Лапидус В.А., Розно М.И. и др. Статистический контроль качества продукции на основе принципа распределения приори- 312 тетов. М.: Финансы и статистика, 1991. - 224 с.

133. Лапидус В.А. Новые проекты стандартов на статистический приемочный контроль и рыночные правовые отношения. // Надежность и контроль качества. 1992. - № 4. - С. 4-11

134. Лапидус В.А. О принципах и мерах по применению статистических методов в рыночных условиях и отношениях // Надежность и контроль качества. 1994. - 1 4. - С. 7-18

135. Лебедовский М.Ф., Федотов А. И. Автоматизация в промышленности. Л.: Лениздат, 1976. - 254 с.

136. Линдли Д. В. О мере информации, даваемой экспериментом: Сб. Математика, 1959, т. 3, № 3. С. 87-104.

137. Лукомский Я.И. Теория корреляции и ее применение к анализу производства. М.: Госстатиздат, 1961. - 205 с.

138. Лумельский Я.П. Статистические оценки результатов контроля качества. М.: Изд-во стандартов, 1979. - 200 с.

139. Мазур М. Качественная теория информации. М.: Мир, 1974. - 240 с. 148. Мартин Н., Ингленд Дж. Математическая теория энтропии. - М.: Мир, 1988. - 350 с.

140. Математическое обеспечение ЕС ЭВМ. Пакет научных подпрограмм. Руководство для программистов. Вып. 1-16. Минск, Ин-т математики АН БССР.

141. Международные стандарты. Управление качеством продукции. ИСО 9000 ИСО 9004, ИСО 8402. - М.: Изд-во стандартов, 1988. - 96 с.

142. Методика по разработке стандартов на статистический приемочный контроль качества продукции по альтернативному признаку с учетом экономических показателей /Составитель Беляев Ю.К. Изд-во Госстандарта СССР, 1972. - 126 с.

143. Методика. Последующие статистические оценки (точечные и интервальные) по результатам контроля. Планы одноступенчатого и усеченного одноступенчатого контроля. М.: Изд-во стандартов, 1981.- 313

144. Моррис У.Т. Наука об управлении. М.: Мир, 1971.

145. Мостелер Ф., Тьюки Дж. Анализ данных и регрессия. М.: Финансы и статистика, 1982. - 317 с.

146. Мухамедханова Р. Об асимптотическом поведении распределения статистической оценки энтропии //Докл. АН Уз. ССР. -1980. 4 - С. 3-4.

147. Мхитарян B.C. Статистические методы в управлении качеством продукции. М. : Финансы и статистика, 1982. - 119 с.

148. Николаев В.И. Информационная теория контроля и управления. Л.: Судостроение, 1973. - 288 с.

149. Новицкий П.В. Основы информационной теории измерительных устройств. М.: Энергия, 1968.

150. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат, 1991. - 304 с.

151. Ноулер Л. А. и др. Статистические методы контроля качества продукции. М.: Изд-во стандартов, 1984. - 104 с.

152. Основы управления технологическими процессами /Под ред. Райбмана Н.С. М.: Наука, 1978. - 440 с.

153. Петерсен И. Применение метода главных компонентов для описания технологических процессов с коррелированными входными параметрами. Изв. АН ЭССР. - XIV - Сер. физ. -мат. и техн. наук. - 1965. - № 4. - с. 540-547.

154. Петров Б.Н., Петров В.В., Уланов Г.М. и др. Начала информационной теории управления //Техническая кибернетика.

155. М.: ВИНИТИ, 1970. № 3. - С. 10-14.

156. Петров Б.Н., Кочубиевский И.Д., Уланов Г.М. Информационные аспекты управления технологическими процессами //Известия АН СССР, "Техническая кибернетика", 1967, № 4.

157. Петров Б.Н., Уланов Г.М., Ульянов C.B. Ценность информации. Семантические аспекты информационной теории управления кибернетики//Техническая кибернетика, т. 5. М. : ВИНИТИ, 1973.- 314

158. Петров В.В., Усков A.C. Информационная теория синтеза оптимальных систем контроля и управления. М.: Энергия, 1975. - 231 с.

159. Пидорин Н.М. О рациональной дискретизации непрерывных величин с точки зрения теории информации //Измерительная техника. 1969. - № 6. - С. 76-78.

160. Пинскер М.С. Информация и информационная устойчивость случайных величин и процессов. М.: Изд-во АН СССР, 1960. - 203 с.

161. Плетнев И.Л. и др. Эффективность и надежность сложных систем. М.: Машиностроение, 1977. - 253 с.

162. Полард Дж. Справочник по вычислительным методам статистики. М.: Финансы и статистика, 1982. - 344 с.

163. Поспелов A.C., Ириков В.А. Программно-целевое планирование и управление. М.: Советское радио, 1976.

164. Программное обеспечение ЭВМ / Под ред. М.Д.Степановой, Е. В.Птичкиной. Минск: Институт математики АН БССР, 1983. - Ч. 1. - 148 с.

165. Программное обеспечение ЭВМ / Под ред. М.Д.Степановой, Е.В.Птичкиной. Минск: Институт математики АН БССР, 1983. - Ч. 2. - 163 с.

166. Рабинович В.И. Информационные методы в теории измерений //Автометрия М.: 1967, Л 5.

167. Рабинович В.И., ЦапенкоМ.П. Информационные характеристики средств измерения и контроля. М.: Сов. радио, 1968. - 96 с.

168. Райбман Н.С., Чадеев В.М. Адаптивные модели в системах управления. М.: Советское радио, 1966. - 159 с.

169. Райбман Н.С., Чадеев В.М. Построение моделей процессов производства. М.: Энергия, 1975. - 376 с. Рекомендации: Применение статистических методов регулирования технологических процессов: Р 50 - 601 - 19 - 91. - М.: ВНИИС,1992. 49 с.

170. Рёпке Г. Неравновесная статистическая механика. М.: Мир, 1990. - 320 с.

171. Розенблат-Рот М. Энтропия стохастических процессов //ДАН СССР, 1957. Т. 112, M 1. - С. 16-19.

172. Розно М.И. Статистический контроль партий продукции по альтернативному признаку при измененном допуске (метод АКУД) // Надежность и контроль качества. 1992. - 1 2.-С. 44-52.

173. Рубичев H.A., Фрумкин В.Д. Достоверность допускового контроля качества. М.: Изд-во стандартов, 1990. - 172 с.

174. Рыньков Р.Н. Построение информационно-энтропийного ресурсного пространства для определения ресурса изделий по критериям разрушения // Надежность и контроль качества. -1996. Ш 3. - С. 37-43.

175. Рыньков Р.Н. Линейный закон суммирования информационной энтропии случайного нагружения при усталостных разрушениях // Надежность и контроль качества. 1996. - № 9. - С. 41-45.

176. Сакагучи М. Заметки по статистическим приложениям теории информации: Сб. Математика, 1959, т. 3. i 3. С. 105-115.

177. Саката Сиро. Практическое руководство по управлению качеством. М.: Машиностроение, 1980. - 215 с.

178. Синай Я.Г. Введение в эргодическую теорию. Ереван: Изд-во Ереванского университета, 1973.

179. Синай Я.Г. Теория фазовых переходов. М.: Наука, 1980.

180. Сираждинов С.Х., Эйдельнант М.И. К вопросу об оценках качества продукции по результатам выборочного контроля //Труды Ин-та математики Уз. ССР. Ташкент, 22, 1961. -С. 135-145.- 316

181. Солодов A.B. Теория информации и ее применение к задачам автоматического управления и контроля. М.: Наука, 1967.- 432 с.

182. Справочник по прикладной статистике. В 2-х. Т. 1 /Под ред. Э.лойда, У.Ледермана. М.: Финансы и статистика, 1990. - 510 с.

183. Справочник по прикладной статистике. В 2-х. Т. 2 /Под ред. Э.лойда, У.Ледермана. М.: Финансы и статистика, 1990. - 526 с.

184. Справочник по специальным функциям/Под ред. Абрамовича М., Стиган И. М.: Наука, 1979. - 830 с.

185. Стратонович Р.Л. О ценности информации при наблюдении случайного процесса в системах, содержащих конечные автоматы. Изв. АН СССР, "Техническая кибернетика, 1965, Ш 5. - С. 3-12.

186. Стратонович Р.Л. Теория информации. М.: Советское радио, 1975. - 424 с.

187. Стратонович Р.Л., Гришанин Б.А. Ценность информации при невозможности прямого наблюдения оцениваемой величины. -Известия АН СССР, "Техническая кибернетика", 1966,

188. Схоутен Н.Ф. Незнание, знание и информация //Теория передачи сообщений. М.: ИЛ, 1957. - С. 18-23.

189. Тонева Е.Й., Пенов Р.Т. Возможность определения вида закона распределения при различных объемах выборки. "Измерительная техника", 1979, I 7, с. 17-18.

190. Точность производства в машиностроении и приборостроении /Под ред. А.Н.Гаврилова. М.: Машиностроение, 1973. -376 с.

191. Трапезников В.А. Автоматическое управление и экономика //Автоматика и телемеханика. 1966. - № 1. - С. 3-8.

192. Тьюки Дж. Анализ результатов наблюдений. М.: Мир, 1981.- 693 с.- 317

193. Тюрин Ю.М., Макаров A.A. Анализ данных на компьютере / Под ред. В.Э.Фигурнова. М.: ИНФРА-М, Финансы и статистика, 1995. - 384 с.

194. Уланов Г.Н. и др. Информационные аспекты точности моделирования. В кн.: Техническая кибернетика, т. 5, 1970. -С. 37-43.

195. Урсул А.Д. Проблема информации в современной науке. М.: Наука, 1975. - 286 с.

196. Фелер В. Введение в теорию вероятностей и ее приложения. В 2-х т. Т. 1. М.: Мир, 1984. - 528 с.

197. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т.2. М.: Наука, 1969.

198. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980. - 280 с.

199. Хальд А. Математическая статистика с техническими приложениями. М.: ИЛ, 1956. - 642 с.

200. Харкевич A.A. О ценности информации //Проблемы кибернетики, вып. 4. М.: Физматгиз, 1969.

201. Хармут X. Применение методов теории информации в физике. М.: Мир, 1989. - 344 с.

202. X.Хармут. Теория секвентного анализа. М.: Мир, 1980.

203. Хартли Р, Передача информации //Теория информации и ее приложения, 1959. С. 32-41.

204. Хаугас К.Э., Пуусепп М.Э., Бударин В.Н. Принципы контроля в АСУ ТП //Электронная промышленность, вып. 3, 1971. С. 34-36

205. Химмебау Д. Анализ процессов статистическими методами. -М.: Мир, 1973.

206. Хинчин А.Я. Об основных теоремах теории информации //УМН, 1956, т. XI, вып. 1(67). С. 17-75.

207. Хинчин А.Я. Понятие энтропии в теории вероятностей. Успехи мат. наук, 1953, т. 8, Ш 3, с. 3-20.- 318

208. Хофманн Д. Измерительно-вычислительные системы обеспечения качества. М.: Энергоатомиздат, 1991. - 272 с.

209. Хьюбер Дж.П. Робастность в статистике. М. : Мир, 1984. -304 с.

210. Хэнсен Б.Л. Контроль качества. Теория и применение. М.: Прогресс, 1968. - 518 с.

211. Черняк Ю.И. Методика количественного анализа информации в системах управления// Доклады по информационным методам в системах управления, измерения и контроля. Владивосток. : ДВФ СО АН СССР, 1968.

212. Шадрин А.Д. Качество и информация // Стандарты и качество. 1996. - M 4. - С. 30-33; - № 5. - С. 30-33.

213. Шакалис В. В. Моделирование технологических процессов. -М.: Машиностроение, 1973. 136 с.

214. Шеннон К. Работы по теории информации и кибернетике. -М. : ИЛ, 1963. 829 с.

215. Шеннон Р. Имитационное моделирование систем искусство и наука. - М.: Мир, 1978. - 418 с.

216. Шеридан Т.Б., ФерреУ.Р. Системы человек-машина: модели обработки информации, управления и принятия решения человеком-оператором. М.: Машиностроение, 1980. - 400 с.

217. Шилейко A.B., Кочнев В.Ф., Химушкин Ф.Ф. Введение в информационную теорию систем. М.: Радио и связь, 1985. -280 с.

218. Шиндовский Э., Шюрц 0. Статистические методы управления качеством. Контрольные карты и планы контроля. М.: Мир, 1976. - 597 с.

219. Шинкаренко Л.М. Некоторые аспекты построения систем обеспечения качества //Надежность и контроль качества. -1992. Ш 2. - С. 18-27.

220. Шор Я.Б., Пахомов A.A. Непрерывный выборочный контроль. //Надежность и контроль качества. 1968. - № 11. - С.

221. Шор Я.Б., Пахомов A.A. Выбор плана одностадийного статистического контроля непрерывного потока продукции // Надежность и контроль качества. 1970. - 1 8. - С. 25-31.

222. Шор Я.Б., Пахомов A.A. Методы выбора плана непрерывного статистического контроля качества по альтернативному признаку //Надежность и контроль качества. 1973. - № 8. - С. 20-25.

223. Шрейдер Ю. А. О семантических аспектах теории информации// Информация и кибернетика. М. : Советское радио, 1967.

224. Шторм Р. Теория вероятностей. Математическая статистика. Статистический контроль качества. М. : Мир, 1970. - 368 с.

225. Эшби У. Р. Введение в кибернетику. М.: ИЛ, 1959. - 432 с.

226. Юдин C.B. Универсальная программа корреляционно-регрессионного анализа. Тула, ТПИ, 1982, 7 с. - Рукопись деп. в ВИНИТИ, № 4113-82 ДЕП.

227. Юдин C.B. Информационные методы управления качеством продукции при производстве БСО (на примере изделия 7Н6). -Дис. . канд. техн. наук. Тула: ТПИ, 1984. 174 с.

228. Юдин C.B., Григорович В.Г. Оценка минимального объема выборки, необходимого для анализа технологического процесса методами теории информации. Тула, ТПИ, 1983, 5с. - Рукопись деп. в ВИНИТИ, Ш 4546-83 ДЕП.

229. Юдин C.B., Григорович В.Г., Козлова Н.0. Информационно-статистические методы управления качеством продукции //Междунар. конгресс "Конверсия, наука, образование". -Тула, май 1993. Тула: ТуГТУ, 1993. - С. 16.

230. Юдин C.B. Информационные методы управления качеством про-дукции/ТуПИ. Тула, 1986. - Деп. в ВИНИТИ, 1986, Ш 3001-В86. - И с.- 320

231. Юдин C.B. Информационная мера определенности процес-са/ТуПИ. Тула, 1986. - Деп. в ВИНИТИ, 1986, № 3000-В86. - 7 с.

232. Юдин C.B., Латышев И.Л. Коэффициент информационной связи как мера определенности процесса//Материалы Всеросс. студ. конф. Тула, ТуПИ, 1986. - С. 46.

233. Юдин C.B. Агоритмы управления процессами на основе термодинамического подхода к теории управления //Агоритмы и структуры систем обработки информации. Тула: ТуПИ,1990. С. 87-90

234. Юдин C.B. Агоритмы обработки данных предельного контроля. Анализ точности и стабильности процесса //Агоритмы и структуры систем обработки информации. Тула: ТуПИ,1991. С. 73-77

235. Юдин C.B. Информационный анализ //Известия Тульского государственного университета. Сер. Математика. Механика. Информатика. Тула: ТуГУ, 1995. - Т. 1. - Вып. 3. - С. 136-145.

236. Юдин C.B. Агоритмы и методы анализа сложных систем на основе информационной меры Шеннона-Винера //Агоритмы и структуры систем обработки информации. Тула: ТуПИ, 1987. - С. 5-10

237. Юдин C.B., Сидоров В.М. Некоторые аспекты применения методов теории информации в управлении процессами //Агоритмы и структуры систем обработки информации. Тула: ТуПИ, 1988. - С. 59-63- 321

238. Юдин C.B., Григорович В.Г., Козлова Н.0. Информационные планы контроля //Известия Тульского государственного университета. Сер. Математика. Механика. Информатика. Тула: ТуГУ, 1996. - Т. 2. - Вып. 3. - С. 119-128.

239. Юдин C.B., Григорович В.Г., Юдин A.C. Информационно-статистические методы оценки качества потока изделий в условиях приемо-сдаточных испытаний // Кузнечно-штамповочное производство. 1997. - Ш 12. - С. 34-37.

240. Юдин C.B., Григорович В.Г. Информационные планы контроля со смещенными границами // Известия Тульского Государственного университета. Сер. Математика. Механика. Информатика. - Том 4. - Выпуск 2. - 1998. - С.

241. Юдин C.B. Новая математическая модель статистического приемочного контроля // Известия Тульского Государственного университета. Сер. Математика. Механика. Информатика. - Том 4. - Выпуск 1. - 1998. - С.

242. Юдин C.B., Григорович В.Г., Юдин A.C. Информационно-статистические методы анализа точности и стабильности технологических процессов // Известия Тульского государственного университета. Сер. Машиностроение. - Том 2. - Выпуск 4. - 1999. - С. 60-64.

243. Юдин С.В., Григорович В.Г. Теоретические оснчеством продукции. Тула: Тульский гос. ун-т, 1998. - 142 с. - Рукопись деп. в ВИНИТИ 24.06.98 г., № 1933-В98.

244. Яглом A.M., Яглом И.И. Вероятность и информация. М.: Наука, 1973. - 512 с.

245. Янковский Б.Е. Информационный способ определения вида закона распределения //Надежность и контроль качества. -1971. Ш 2. - С. 71-79.

246. Attneave, F. Informationtheory in der Psychologie. 2 Aufl. Bern, Stuttgart, Wienn. 1991

247. BMDP: Biomedical Computer Programs. Ed. W.Dixon. Univ. of California Press, 1979.

248. Burr I. W. Fundamental Principles of Sequential Analysis, Industrial Quality Control. P.p.48-51(May 1953).

249. Cheng T.C.E. EPL with Process Capability and Quality Assurance Considerations. Journal of the Operational Research Society. - 1991. - V. 42. - N. 8. - P.p. 713-720.

250. Dodge H.F. A Sumpling Inspection Plan for Continious Production. Annals of Math. Stat., v. 14, 1943, p.p. 264-269.

251. Dodg H.F. Chain sampling Inspection Plan, Industrial Quality Control, p. 10 13 (January 1958).

252. Dodg H.F., Roming H.G. Sampling Inspektion Tables Single and Double Sampling, 2. Aufl., New York, John Wiley and Sons; London, Chapmen and Hall, 1959.

253. Eye, A. von. On the Equivalence of the Information-Theoretic Transmission-Measure to the Common %2-Statistic. -"Biom. J.", V. 24, 1982, p.p. 391-398.

254. Fisher R.A. Theory of Statyistical Estimation. Proc. Camb. Phil. Sos., v. 22, 1925, p.p. 700-725.- 323

255. Gaehn A.H. Improving LC Efficiency with Zone Control Charts //A SLC Quality Congress Transactions. Minneapolis, 1987. - P.p. 558-563.

256. Garner W.R. and McGill W.J. Relations between Information and variance Analyses. "Psychometrica", v. 21, 1956, p.p. 219-228.

257. Hamaker H. C. Die Abnahmeprfung von Partien mittels Stichproben, Philips Technische Rundchau, 11, H. 6, S.186- 193.

258. Hartley R.V.L. Transmission of Information. Bell System Tech. J., v.7, 1928, p.p. 535-563.

259. IMSL Library: International Mathimatical and Statistical Libraries. Inc.: Hillcroft, Houston, Texas, 1980.

260. McGill W.J. Multivariate Information Transmission. -"Psychometrica", v. 19, 1954, p.p. 97-116

261. Military Standard (MIL STD - 105D) - Sampling procedures and tables for inspection by attributes, Washington, US Government Printing Office, 1963.

262. Nelson L.I. A simplified Sequential Procedure for Process Adjustment // Industrial Quality Control. 1963. - n.7.- P.p. 15 18.

263. Schaafsma A.H., Willemze F.G. Moderne Qualittskontrolle, Eindhoven, Philips Technische Bibliothek, 1955.

264. Statistical Research Group (Columbia University), Sequential Analysis of Statistical Data, 1945 and 1953.

265. TGL 14450 Attributprufung mittels Stichproben.

266. Wald A., Wolfowitz J. Sampling Inspection Plan for Continuous Production with Insure a Prescribed Limit on the Outgoing Quality, Annals of Mathematical Statistics., 16, p.p. 30 49, 1945.

Похожие диссертации