Оптимальність у системах керування

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

 

 

 

 

 

 

 

 

 

 

 

 

 

 

оптимальність у системах керування

 

1. Умови оптимальності у неавтономних системах керування

 

У загальному випадку неавтономної системи права частина закону руху й підінтегральна функція цільового функціонала залежать явно від часу , тобто закон руху має вигляд:

 

, (1)

 

а цільовий функціонал дорівнює

 

. (2)

 

Тут функції і неперервні по сукупності змінних і неперервно диференційовані по змінних , , .

Також вважатимемо, що момент часу , який відповідає початковому стану , відомий, а момент часу проходження через кінцеву точку не заданий і повинен бути знайдений, тобто сформульована задача це задача з вільним часом.

Поставлена задача може бути зведена до автономної задачі введенням додаткової змінної . До закону руху при цьому додається рівняння

 

,

 

а до початкових умов співвідношення .

Тепер систему (2) можна переписати у вигляді:

 

(3)

 

а функціонал дорівнюватиме

 

, (4)

 

де (відповідно до доданого у початкову систему рівняння).

Отже, неавтономну -вимірну задачу було зведено до автономної задачі з розширеним фазовим простором. У новій задачі потрібно знайти оптимальну траєкторію, що поєднує точку розширеного фазового простору з деякою точкою на прямій, яка проходить через точку паралельно осі . Оскільки кінцеве значення змінної невідоме, то нова задача це задача з фіксованим лівим і рухомим правим кінцями.

Якщо в задачі оптимального керування (3) (4) відомі і початковий момент часу й кінцевий момент часу , то задача називається задачею з фіксованим часом. Перетворення цієї задачі введенням додаткового змінного приводить до задачі з фіксованими кінцями в такому формулюванні. Потрібно знайти керування , що переводить фазову точку системи (2) зі стану в момент часу у стан в момент часу , причому функціонал (4) набуває найменшого значення. Зауважимо, що момент часу попадання в точку можна не вважати фіксованим, оскільки в силу тотожності попадання в точку може відбутися тільки в цей момент часу. Таким чином, до даної задачі можна застосувати теорему, відповідно до якої для одержання необхідних умов екстремуму функціонала необхідно максимізувати функцію Понтрягіна

 

, (5)

 

де загальний вигляд функції Понтрягіна з теореми 1, у якій не врахована додаткова, ()-ша змінна. Спряжена система для цієї задачі за умов набуває вигляду:

 

(6)

 

Має місце така теорема.

Припустимо, , оптимальний процес для задачі з фіксованим часом. Тоді існує ненульова вектор-функція , що відповідає цьому процесу, така що:

1. Для будь-якого функція змінної набуває максимального значення в точці , тобто:

 

: .

2. , .

 

Оскільки, як і раніше, , то умову 2 цієї теореми достатньо перевірити в якій-небудь одній точці відрізка .

Розглянемо випадок, коли при фіксованому правий кінець вільний. Ця задача полягає в тому, щоб із заданого стану за заданий час пройти по траєкторії з довільним кінцевим станом за умови мінімізації цільового функціонала. Умови трансверсальності для цієї задачі набувають вигляду:

 

, . (7)

 

Для цього випадку необхідна умова оптимальності полягає в тому, щоб функція досягала максимального значення для кожного на оптимальному керуванні і мала місце умова (7).

 

2 Поняття особливого керування

 

На практиці часто зустрічаються задачі оптимального керування, у яких функція Понтрягіна лінійно залежить від всіх керувань або від частини з них (наприклад, в лінійних задачах оптимальної швидкодії). Однак у нелінійних задачах оптимального керування (якщо функція Понтрягіна є нелінійною по одній або декількох фазових змінних) можлива ситуація, коли на оптимальній траєкторії коефіцієнт при одній з компонент вектора керування обертається на нуль всюди на деякому інтервалі часу, і тоді умова максимуму функції за не дозволяє однозначно визначити оптимальне керування. Ця ситуація називається особливим режимом керування. Дослідимо її детальніше.

Розглянемо автономну задачу оптимального керування

 

,

 

Де ; , , , ,

довільна множина з ;

лінійний простір кусково-неперервних на функцій.

Крайові умови задачі мають вигляд:

 

, .

 

Потрібно знайти таке припустиме керування , що переводить систему зі стану у стан , причому відповідний припустимий процес доставляє мінімальне значення функціоналу

 

,

 

де функції , неперервні по сукупності всіх змінних і неперервно-диференційовані по змінних .

Вважатимемо, що функція Понтрягіна для цієї задачі є лінійною за частиною компонент вектора . Виділимо із цих компонент групу з керувань (з тих, за якими функція лінійна) і позначимо їх через , а інші керувань зберемо у вектор (він також може включати компоненти, за якими функція лінійна). За таких умов закон руху набуває вигляду:

 

,

 

де .

Складемо функцію Понтрягіна для даної задачі:

 

.

 

Очевидно, що

 

, . (8)

 

Припустимо, що процес разом з розвязком спряженої системи

 

, , (9)

 

задовольняє принципу максимуму і, крім того, припустимо, що у всіх точках деякого інтервалу має місце рівність

 

, (10)

або, враховуючи (10),

 

, , . (11)

&nbs