Оптимальність у системах керування
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
p;
Ця ситуація означає, що коефіцієнти при на деякому часовому відрізку дорівнюють 0, і оптимальне керування визначити неможливо. У цьому випадку вектор керувань називається особливим керуванням на відрізку , процес особливим режимом, траєкторія траєкторією особливого режиму, а відрізок часу ділянкою особливого керування.
З формули (11) випливає, що на ділянці особливого режиму функція Понтрягіна не залежить від . Дійсно, :
.
Тому в даній ситуації умова максимуму по не дає жодної інформації про конкретні значення керувань .
Оскільки на ділянці особливого режиму має місце співвідношення (11), то очевидно, що
,
і т.д. Останні співвідношення разом з умовою (10) дозволяють визначити всі особливі режими.
3. Лінійна задача оптимальної швидкодії
Розглянемо лінійну задачу оптимальної швидкодії:
, , (12)
де , ,
, числові матриці розмірності та відповідно.
Область керування задачі замкнутий обмежений багатогранник в :
, , (13)
Якщо для будь-якого вектора , паралельного будь-якому ребру багатогранника , система векторів , , …, (14) є лінійно незалежною, то багатогранник задовольняє умові спільності положення відносно системи (14).
Для перевірки лінійної незалежності векторів (13) достатньо перевірити, чи матриця, стовпцями якої є стовпці (12), є невиродженою, тобто
.
Перепишемо формулу (10):
, ,
де , -і рядки матриць і .
Функція Понтрягіна лінійної задачі оптимальної швидкодії має вигляд:
(15)
Оскільки перший доданок у формулі (15) не залежить від , то функція досягає максимуму за змінною одночасно з функцією
.
Спряжена система у цьому випадку може бути записана у вигляді:
, ,
або у векторній формі
. (16)
Позначимо через . З теореми 2 випливає, що якщо оптимальне керування, то існує такий ненульовий розвязок системи (16), для якого в кожний момент часу функція набуватиме максимального значення за змінною :
. (17)
Оскільки система (17) з постійними коефіцієнтами не містить невідомих функцій і , то всі її розвязки можна легко знайти, після чого, використовуючи їх для розвязання задачі максимізації функції на множині , знаходимо оптимальні керування .
Для будь-якого нетривіального розвязання системи (11) співвідношення (14) однозначно визначає керування , причому це керування кусково стале, а значеннями керування в точках неперервності є вершини багатогранника .
Точки розриву оптимальної функції керування відповідають зміні значення керування і називаються точками перемикання. Якщо точка перемикання, то ліворуч від неї керування має одне значення, наприклад, , а праворуч інше .
Позначимо через підмножину у виду
. (18)
Якщо всі корені характеристичного рівняння матриці з (14) є дійсними, то для будь-якого розвязання рівняння (18) кожна з функцій є кусково сталою і має не більше ніж перемикань ( порядок системи (16)).
Керування називається екстремальним керуванням, якщо воно задовольняє принципу максимуму.
Для лінійної задачі оптимальної швидкодії з областю керування багатогранником керування є екстремальним, якщо існує таке нетривіальне розвязання системи (17), для якого матиме місце співвідношення (18).
Зрозуміло, що будь-яке оптимальне керування є екстремальним. Тому, щоб знайти оптимальне керування, що переводить фазову точку зі стану у стан , треба відшукати всі екстремальні керування з цими крайовими умовами, а потім серед них вибрати те, що здійснює перехід за найменший час.
У загальному випадку можуть існувати кілька оптимальних керувань, що переводять фазову точку зі стану у стан , але якщо початок координат у просторі керувань є внутрішньою точкою багатогранника , то екстремальне керування єдине. Отже, у лінійних задачах оптимальної швидкодії принцип максимуму дозволяє не тільки визначити вид оптимальних керувань, але й одержати умови єдиності оптимального керування.
Припустимо, що початок координат є внутрішньою точкою багатогранника припустимих керувань. Якщо і два екстремальних керування, що переводять фазову точку зі стану у стан за час і відповідно, то і , .
У теоремі має місце умова .
Теорема. Якщо існує хоча б одне керування, що переводить систему (17) зі стану у стан , то існує й оптимальне по швидкодії керування, що також переводить систему з у .
4. Умови оптимальності у задачі з рухомими кінцями
У задачі з рухомими кінцями або початковий стан , або кінцевий стан , або обидва ці стани невідомі. Задані тільки множини і , що містять точки та .
Гіперповерхня це множина всіх точок , які задовольняють співвідношенню
,
де скалярна диференційована функція. Якщо лінійна функція, то гіперповерхня називається гіперплощиною і описується рівнянням
. (19)
Якщо , то гіперплощина (19) є ()-вимірним лінійним підпростором в .
Будь-який ()-вимірний підпростір може бути заданий як множина розвязань лінійної однорідної системи з рівнянь із невідомими, матриця якої має ранг :
.
Такий лінійний підпростір називається -вимірною площиною. Множина розвязань системи нелінійних рівнянь
де функції , …, диференційовані і ранг матриці Якобі цієї системи функцій дорівнює , є -вимірним гладким р?/p>