Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистраль...

Реферат - Экономика

Другие рефераты по предмету Экономика

?ческой ликвации уменьшается вследствие изменения самого характера кристаллизации, приближающем его к бездиффузионному процессу.

1.3.3.2.5 Характер изменения прочности и пластичности металлов и сплавов в области высоких температур при сварке

Механические характеристики сварного соединения прочность и пластичность в период его формирования определяют вероятность получения бездефектного соединения в той же степени, в какой прочностные и эксплуатационные характеристики степень надежности работы конструкции. На рис. 28 показаны типичные кривые, характеризующие изменение прочности ? и пластичности П сплавов при высоких температурах. В области нагрева до температур, близких к температуре равновесного солидуса (Тс) прочность и пластичность сплавов резко падают. Пластичность остается на весьма низком уровне в некотором интервале температур, а затем опять повышается. Объяснение такого неоднозначного явления в следующем. Исследуемый металл (сплав), нагретый до расплавления, охлаждается, и, начиная с температуры Тл , в нем образуются зародыши твердой фазы. До тех пор, пока количество твердой фазы невелико, металл находится в жидкотвердом состоянии (рис. 29, а), и пластичность расплава практически не отличается от пластичности жидкости, т.к. кристаллы металла свободно плавают в жидкости, не ограничивая ее способности перетекать и занимать любую форму. Прочность такого жидкотвердого агрегата практически равна нулю. Начиная с некоторой температуры, называемой температурой верхней границы интервала хрупкости (Тв.г.) металл переходит в стадию твердожидкого состояния, характеризующуюся таким увеличением количества твердой фазы, при котором возможность жидкости перетекать между затвердевшими зернами резко уменьшается (рис. 29, б). При деформировании происходит заклинивание зерен, и дальнейший процесс становится возможным только в случае пластического деформирования самих зерен либо смещения их относительно друг друга. Обычно оба этих процесса протекают одновременно. Деформация такого двухфазного агрегата при условии сохранения сплошности в направлении действия сил Р возможна только при смятии отдельных точек контакта зерен, поворота прилегающих зерен и их деформации. В ранней стадии такого деформирования не исключена возможность перетекания жидкости в межзеренное пространство. В случае если циркуляция жидкости между зернами нарушена, необходимо, чтобы существующие между ними жидкие прослойки сами воспринимали растягивающие напряжения. Вероятность такого явления в данной стадии затвердевания велика, т.к. сопротивление разрушению малых объемов жидкости может быть весьма значительным. Оно зависит от поверхностного натяжения, температуры и вязкости жидкости. Однако прочность закристаллизовавшейся твердой фазы в этот период намного больше, поэтому разрушение, если оно наступает, происходит по границам зерен, т.е. имеет межкристаллический характер. Пластичность металла, находящегося на такой стадии затвердевания, очень мала доли процента. В то же время сопротивление пластическим деформациям с момента возникновения явления заклинивания зерен и ограничения циркуляции жидкой фазы начинает возрастать. Если значение деформации металла, находящегося в таком состоянии, превысит его деформационную способность, произойдет хрупкое разрушение по жидким прослойкам. С дальнейшим снижением температуры возрастает объемная прочность жидкости, уменьшается ее объем, увеличивается число контактов между зернами. Одновременно с этим повышается и прочность самих границ зерен. При некоторой температуре границы упрочняются настолько, что разрушение начинает происходить не по ним, а по телу самих зерен (точка А рис. 28). Эта температура названа эквикохезивной. При этом пластические свойства металла возрастают, т.к. деформация уже не концентрируется по малым прослойкам вокруг зерен, а воспринимается всем агрегатом в достаточной степени равномерно. Температура резкого возрастания пластических свойств находится ниже температуры равновесного солидуса и называется нижней границей интервала хрупкости (Тн.г.). Интервал температур, заключенной между верхней и нижней границами хрупкого состояния металла называется температурным интервалом хрупкости (ТИХ).

Кривая пластичности может иметь еще один минимум, расположенный в области более низких температур, в частности, в том случае, когда при высоких температурах сварочного цикла происходит значительное перераспределение примесей из тела зерна к его границам и образуются новые фазы эвтектического характера. У однофазных сплавов могут образовываться новые границы зерен с более высоким уровнем физической или химической неоднородности, приводящей к понижению прочностных и пластических свойств. Иногда первый и второй ТИХ расположены так близко, что могут сливаться, образуя один ТИХ.

1.3.3.2.6 Горячие трещины при сварке

Горячими трещинами называются хрупкие межкристаллитные разрушения сварного шва или околошовной зоны, возникающие в области ТИХ в результате воздействия термодеформационного цикла. Горячие трещины чаще всего возникают в сплавах, обладающих выраженным крупнокристаллическим строением с повышенной локальной концентрацией легкоплавких фаз. Согласно общепринятым представлениям они возникают в том случае, если интенсивность нарастания деформаций в металле сварного соединения в период остывания приводит к деформациям большим, чем его пластичность в данных температу?/p>