Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистраль...

Реферат - Экономика

Другие рефераты по предмету Экономика

?нцентрация водорода наблюдается вблизи линии сплавления. Таким образом, при средней относительно небольшой концентрации водорода в металле, в сварочном соединении возникают опасные зоны повышенной хрупкости. К основным путям снижения водорода в зоне сварки можно отнести:

1)снижения парциального давления водорода и создание условий для уменьшения его растворимости в жидком металле сварочной ванны (путем введения в покрытие фторидов и хлоридов, позволяющих связать водород в прочные соединения, не растворяющиеся в жидком металле);

2)тщательная подготовка кромок под сварку, удаление частично гидратированных оксидных пленок на металле;

3)уменьшение содержания водяных паров в атмосфере дугового разряда прокалкой электродов.

Содержание углерода C стараются сохранить при сварке конструкционных, низколегированных сталей. Однако при сварке специальных и термоустойчивых сталей, в которых содержание углерода должно быть малым (0,030,06%), в результате взаимодействия с углеродсодержащими веществами в сварочных материалах (карбонатами и др.) содержание углерода может подняться выше допустимых пределов.

1.3.3 Термодеформационные процессы и превращения в металлах при сварке

При сварке в металле происходят термодеформационные и физико-химические процессы. Термодеформационные процессы заключаются в упругопластическом деформировании металла при неравномерном нагреве в процессе сварки и возникновении вследствие этого временных и остаточных напряжений. Физико-химические процессы при сварке происходят в твердом и расплавленном металле и характеризуются фазовыми и структурными превращениями, растворением и выделением веществ из раствора, диффузией и другими явлениями.

Термодеформационные процессы и превращения в металлах при сварке определяют технологическую прочность металла шва и зоны термического влияния, т.е. стойкость против образования локальных разрушений в процессе изготовления сварного соединения.

Кроме того, сварочные процессы в значительной степени определяют эксплуатационные свойства конструкции. Вопросы точности изготовления сварных конструкций основаны на знании закономерностей образования деформаций и напряжений при сварке. Эксплуатационные свойства сварных конструкций, т. е. степень соответствия механических, физических и химических свойств условиям и требованиям эксплуатации, также определяются термодеформационными процессами и превращениями в металлах при сварке.

1.3.3.1 Термодеформационные процессы при сварке

1.3.3.1.1 Понятие о сварочных деформациях и напряжениях

При равномерном нагреве материала происходит его свободное расширение без возникновения напряжений. Если же осуществляется неравномерный нагрев тела, то связи нагретых участков с ненагретыми препятствуют свободному расширению. Вследствие этого в теле возникают температурные собственные напряжения, существующие при отсутствии приложенных к нему внешних сил. Температурные напряжения, возникающие в процессе сварки, принято называть временными напряжениями. Временные напряжения существуют в теле в процессе сварки на всех стадиях нагрева, выравнивания температур и охлаждения.

Неравномерный нагрев и изменение объема металла вследствие температурного расширения, фазовых или структурных превращений приводят к возникновению упругих и пластических деформаций. В результате пластических деформаций в сварных элементах после полного охлаждения остаются собственные напряжения, которые называются остаточными сварочными напряжениями. Для объяснения механизма образования остаточных сварочных деформаций и напряжений введем следующие допущения (рис. 19):

1)все сечения нагруженного элемента (пластины) перемещаются плоскопараллельно (гипотеза плоских сечений, рис.19, а);

2)диаграмма ? = f(?) имеет вид диаграммы Прандтля (рис. 19, б);

3)зависимость ? = f(T) имеет вид, 5 (рис. 19, в).

Рассмотрим два случая нагрева пластины тепловым источником, движущимся вдоль ее продольной оси:

1)максимальная температура нагрева менее 773К. Представим пластину в виде отдельных волокон. Каждое из этих волокон должно получить приращение длины в зависимости от температуры нагрева (?l = ??T), а концы волокон должны были бы расположиться по кривой, являющейся кривой распределения температур. Согласно допущению 1 пластина должна удлиниться на ?L = ??пл,ср. Средняя температура может быть определена путем интегрирования кривой А. Средние волокна должны были бы получить большее удлинение, но периферийные, менее нагретые, это удлинение сдерживают. Следовательно, в центральной области возникают сжимающие напряжения, а в периферийных растягивающие. При охлаждении происходит возврат к первоначальному состоянию, и, т.к. напряжения носят упругий характер, никаких остаточных напряжений и деформаций не возникает.

2)максимальная температура нагрева более 873К. При нагреве происходит то же, что и в первом случае. Однако в центральной зоне, где температура больше 873К, и следовательно, предел текучести равен нулю, металл получит пластическую деформацию укорочения. При охлаждении периферийные области, как менее нагретые, охлаждаются до начальной температуры, в то время как центральные области все еще продолжают охлаждаться. Но так как они при нагреве получили пластическую деформацию укорочения, а край пластины перемещается плоскопараллельно, центральная область окажется растянутой, а периферийные будут