Обратимые матрицы над кольцом целых чисел
Дипломная работа - Педагогика
Другие дипломы по предмету Педагогика
Министерство образования Российской Федерации
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Обратимые матрицы над кольцом Zn
Выполнила:
Студентка V курса
Математического факультета
Сычева О. Г.
Научный руководитель:
д.ф.-м.н., профессор
Вечтомов Е. М.
Рецензент:
к.ф.-м.н., доцент
Чермных В. В.
Допущена к защите в ГАК
Зав.кафедрой Вечтомов Е М.
Декан факультета Варанкина В. И.
Киров 2003Содержание:
Введение………………………………………….…………………….2 стр.
1 Основные понятия………………………………………………….3 стр.
2 Обратимые матрицы над полем Zp
п.1 формула для подсчета обратимых матриц порядка 2 ……….10 стр.
п.2 формула для подсчета обратимых матриц порядка 3 ……….11 стр.
п.3 общая формула подсчета обратимых матриц над полем Zp ..16 стр.
3 Обратимые матрицы над Zn ………………………………………17 стр.
Литература …………………………………………………………….27 стр.
Введение
Теория матриц является одним из основных вопросов линейной алгебры.
Цель данной работы: подсчитать количество обратимых матриц над кольцом вычетов и по возможности получить формулу для их вычисления. Для вычисления количества обратимых матриц воспользовались теорией определителей и полным перебором всех возможных вариантов получения элементов в кольцах вычетов.
Вся работа разбита на два этапа:
В 2 показан метод построения обратимых матриц второго и третьего порядков над полем Zp . В конце параграфа построена гипотеза формулы подсчета количества обратимых матриц nго порядка над полем Zp .
В 3 приведен алгоритм построения обратимых матриц второго порядка над некоторыми кольцами вычетов (приведены конкретные примеры). В конце параграфа построена гипотеза формулы подсчета количества обратимых матриц второго порядка над кольцом классов вычетов Zn .
1. Основные определения.
Матрицей называется прямоугольная таблица, заполненная некоторыми математическими объектами. Чаще всего рассматриваются матрицы, заполненные элементами из некоторого поля P.
Элементы матрицы обозначаются одной буквой с двумя индексами, указывающими "адрес" элемента - первый индекс дает номер строки, содержащий элемент, второй - номер столбца. Если матрица имеет m строк и n столбцов, то говорят, что матрица имеет размерность (или - размеров ). Мы будем обозначать матрицы заглавными латинскими буквами, а ее элементы - такими же буквами, но строчными. Таким образом, матрица (размеров ) записывается в форме:
.
Матрица, состоящая из одних нулей, называется нулевой.
Будем обозначать ее 0.
Матрица, имеющая одно и то же число n строк и столбцов, называется квадратной. Число n называется порядком квадратной матрицы.
Элементы матрицы, у которых оба индекса равны (i=j) называются диагональными, а воображаемая прямая, соединяющая все диагональные элементы матрицы называется главной диагональю.
Квадратная матрица, у которой все элементы, за исключением элементов главной диагонали, равны нулю, называется диагональной.
Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается Е.:
Две матрицы считаются равными, если они одного размера и у них совпадают соответствующие элементы.
Две матрицы A=(aij) и B=(bij) одного и того же размера можно складывать, их суммой будет матрица того же размера C=(ci j), , т.е. чтобы получить сумму двух матрицы достаточно сложить соответственные элементы этих матриц.
Произведение элемента c из поля на матрицу A=(aij) определяется следующим образом: cA=(caij).
Для любой матрицы A существует противоположная -A такая, что
A+(-A)=0.
Все перечисленные свойства непосредственно следуют из определений и свойств операций в поле.
Рассмотрим матрицу A=(aij) размером и матрицу B=(bij) размером (т.к. произведение матриц определено лишь в том случае, когда число столбцов в первой матрице равно числу строк во второй). Для таких матриц введем действие умножения матрицы на матрицу, в результате чего получается матрица C=(cij) размером , где .
Итак, матрицы можно складывать, умножать их на скаляр, а также умножать матрицу на матрицу. Эти действия обладают свойствами:
По сложению:
- (A+B)+C=A+(B+C) ассоциативность;
- A+B=B+A коммутативность;
- Существует нейтральный элемент матрица 0: A + 0 = 0 + A = A;
- Для матрицы A существует обратный элемент -A: A + (-A)=0;
По умножению матриц на скаляр:
;
;
;
;
По умножению матриц:
- Произведение матриц в общем случае не коммутативно, т.е. AB
ВА;
- (AB)C=A(BC) ассоциативность;
- (cA)B=A(cB)=cAB;
- Дистрибутивность умножения относительно сложения (правая и левая) (A1+A2)B=A1B+A2B, A(B1+B2)=AB1+AB2;
- Существует единственный нейтральный элемент E
(если A квадратная): EA = AE = A. Если же