Амплитудный накопитель сигнала некогерентного рассеяния

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

?бработки информации и быстродействующие компьютеры [11,14,16].

Некогерентное рассеяние на метровых и дециметровых волнах обусловлено наличием флуктуаций плотности плазмы, вызываемых тепловым движением ионов и электронов. В этом случае основной причиной флуктуаций плотности электронов является наличие ионов, а в результате кулоновского взаимодействия между ними возникают ионно-звуковые волны. Иными словами, каждый ион оказывает возмущающее действие на движение всех электронов внутри сферы дебаевского радиуса и, таким образом, хаотическое движение ионов приводит к соответствующим статистическим флуктуациям концентрации электронов. Другой не менее важной причиной флуктуаций является кулоновское отталкивание самих электронов, что приводит к слабому резонансу на плазменной частоте. В спектре рассеянного сигнала возникает компонента, смещенная на величину плазменной частоты для высоты, на которой происходит рассеяние (так называемая плазменная линия, или электронная часть спектра) [7-9].

Ионно-звуковая волна подобна звуковым волнам и распространяется со скоростью, близкой к тепловой скорости доминирующих ионов. При наличии такой волны в плазме образуются сгустки и разряжения плотности. На этих слабых неоднородностях рассеиваются радиоволны, их результирующая максимальна, если волны, рассеиваемые отдельными неоднородностями, суммируются в фазе. При этом расстояние между неоднородностями должно быть равно половине длины волны для обратного рассеяния. Рассеянный сигнал несет информацию о распределении и характере движения не только электронной, но и ионной компоненты плазмы. Он позволяет получать богатый набор параметров ионосферы: электронную и ионную температуры, распределение по массам, среднюю скорость дрейфа частиц разных сортов, что в свою очередь дает возможность определить ионосферное электрическое поле, направление и силу тока, скорость ветра в нейтральной атмосфере и другие важные параметры [3,6,7].

В настоящее время восемь обсерваторий ведут зондирование ионосферы методом некогерентного рассеяния, пять из них расположены в Америке, одна у нас в стране и одна в России [11,12]. При Институте ионосферы действует радар для исследования ионосферы методом некогерентного рассеяния. Этот радар представляет собой установку, работающую в импульсном режиме. Созданный в Институте ионосферы радар работает на частоте около 150МГц. Импульсная мощность радиопередающего устройства около 2 МВт. Длительность импульсов может изменяться в широких пределах - от 40мкс до 1мс. Шумовая температура системы не хуже 500 К.

Обычно при исследованиях ионосферы методом HP измеряется уровень мощности принятого сигнала, его спектр либо автокорреляционная функция, так как коэффициент корреляции флуктуаций электронов несет в себе ту же информацию, что и спектр мощности [13]. Для решения широкого круга задач, возникающих при исследовании ионосферы, предусмотрена возможность работы комплекса в нескольких основных режимах, отличающихся параметрами зондируемого импульса (длительностью, частотой повторения и временной расстановкой импульсов друг относительно друга). Например, режим 1 (длительность импульса около 1мс, частота повторения 25Гц) используется для исследования параметров ионосферы на высотах, больших высоты максимума слоя F2, где монотонный характер изменения высотных профилей допускает применение импульсов с разрешающей способностью по высоте около 150км. С другой стороны, малый уровень принимаемого с этих высот сигнала в свою очередь требует применения импульсов большой длительности [15].

Сигнал с выхода блока кварцованных гетеродинов (общего для приемного устройства, передающего устройства и системы обработки) поступает на двухканальное передающее устройство, где усиливается, а затем по волноводному фидерному тракту передается в возбуждающий рупор двухзеркальной антенны. Здесь мощный радиоимпульс излучается вертикально вверх, а весьма слабый сигнал отраженного от ионосферы радиоимпульса, рассеянного на тепловых флуктуациях электронной плотности, принимается той же антенной и через антенный коммутатор "прием-передача" поступает на входные параметрические усилители приемного устройства. После усиления и преобразования сигнал на промежуточной частоте подается на специализированное вычислительное устройство, где производится его первичная обработка - временное накопление и вычисление его автокорреляционной функции. Результаты корреляционной обработки поступают в компьютер, где по ним определяются значения ионосферных параметров и выдаются данные на печать и на экран видеоконтрольного устройства.

Напряжение, возникающее на выходе приемной системы, представляет собой сумму напряжения шумов системы и напряжения собственно НР-сигнала. Поэтому задача определения АКФ сигнала сводится к нахождению разности между корреляционной функцией выходного напряжения и корреляционной функцией шумов. Вычисление их производится в цифровом коррелометре, подключенном к усилителю промежуточной частоты приемника. В этом случае корреляционная функция сигнала, входящая в состав корреляционной функции смеси сигнал-шум, оказывается умноженной на косинусоидальный множитель промежуточной частоты. Поэтому при задержках, кратных периоду этого множителя, искомая корреляционная функция получается без предварительного детектирования.

 

Рисунок 2 - Спектр и АКФ сигнала НР

 

Поскольку обработка сигнала ведется в цифр?/p>