Методы окислительно-восстановительного титрования
Дипломная работа - Химия
Другие дипломы по предмету Химия
начительно изменяется, если окисленная или восстановленная форма вещества в анализируемом растворе участвует в процессе комплексообразования.
Потенциал редокс-пары, например, в отсутствии комплексообразования будет при 25 0С равен:
При комплексообразовании с лигандом концентрация ионов уменьшится:
Константа устойчивости равна:
.
Из данного выражения концентрация ионов
,
Подставив ее в исходное уравнение Нернста, после ряда преобразований получим:
4) От образования малорастворимых веществ. В присутствии ионов, способных образовывать малорастворимые соединения, потенциал окислительно-восстановительной пары можно вычислить следующим образом:
.
2. Кривые титрования
В титриметрических методах расчет и построение кривой титрования дают возможность оценить, насколько успешным будет титрование, и позволяют выбрать индикатор. При построении кривой окислительно-восстановительного титрования по оси ординат откладывают потенциал системы, а по оси абсцисс - объем титранта или процент оттитровывания.
2.1 Расчет теоретических кривых
Рассмотрим в качестве примера титрование 100 мл 0,1н раствора FeSO4 0,1н раствором KMnO4 в кислой среде ([Н+] = 1 моль/л):
В любой момент титрования раствор всегда содержит две окислительно-восстановительные пары: Fe3+/Fe2+ и MnO4-/Mn2+. Концентрации реагирующих веществ устанавливаются таким образом, что при равновесии потенциалы двух систем равны в любой точке кривой титрования. Следовательно, для вычисления потенциала пригодны два уравнения:
,
.
Рассчитанные значения потенциалов удовлетворяют обоим уравнениям, но расчет может быть упрощен, исходя из следующего. Пока оттитрованы еще не все ионы Fe2+, концентрации Fe3+ и Fe2+ вычислить легко. Концентрацию не вошедших в реакцию ионов MnO4- вычислить гораздо труднее, так как приходится использовать константу равновесия данной окислительно-восстановительной реакции, которая должна быть известна. Поэтому вначале до точки эквивалентности удобнее пользоваться уравнением для системы Fe3+/Fe2+.
При введении избытка перманганата легко рассчитать концентрации MnO4- и Mn2+ и значение потенциала, обусловленное этой парой.
) Расчет потенциала до начала титрования. Рассчитывая первую точку на кривой титрования до прибавления перманганата в раствор, нужно учитывать, что в растворе не могут присутствовать только ионы Fe2+, а всегда в малой концентрации присутствуют и ионы Fe3+, но равновесная концентрация их неизвестна. По этой причине при расчете кривых окислительно-восстановительного титрования обычно не приводят значение потенциала для этой точки, соответствующей моменту, когда в исследуемый раствор еще не прибавлен титрант.
) Расчет потенциала в процессе титрования до точки эквивалентности. Вычислим потенциал системы для точки на кривой, когда к 100 мл 0,1н раствора FeSO4 прибавлено 50 мл 0,1н раствора KMnO4 (50% оттитровывания). При этом в растворе находятся три компонента реакции Fe3+ , Fe2+ и Mn2+; концентрация четвертого (MnO4-) очень низка. Равновесная концентрация ионов Mn2+ равна общей концентрации раствора KMnO4 за вычетом пренебрежительно малой концентрации непрореагировавших перманганат-ионов:
Такое приближение допустимо, поскольку константа равновесия этой реакции велика (К?1064). Такова же концентрация ионов Fe3+:
.
Подставляя значения равновесных концентраций железа (II) и железа (III), получаем:
т. е. при оттитровывании 50% определяемого вещества потенциал системы равен стандартному потенциалу окислительно-восстановительной пары определяемого вещества.
Особый интерес представляют те точки на кривой титрования, которые соответствуют 0,1 мл недостатка и 0,1 мл избытка KMnO4 (0,1% эквивалентного объема), так как они определяют скачок потенциала вблизи точки эквивалентности. Вычислим первую из них (начало скачка). Поскольку в этот момент прилито 99,9 мл раствора KMnO4, то в растворе осталось неоттитрованным Fe2+ в объеме 0,1 мл. Следовательно, для этого момента:
,
,
3) Расчет потенциала в точке эквивалентности. В приведенных выше уравнениях для значений потенциалов реагирующих окислительно-восстановительных пар уравняем коэффициенты при членах, содержащих логарифмы, путем умножения второго члена уравнения на 5. После этого оба уравнения почленно сложим, учитывая, что [Н+] = 1 моль/л:
-----------------
.
Так как в точке эквивалентности ионы MnO4- вводят в раствор в количестве, соответствующем уравнению реакции, то при равновесии на каждый MnO4- -ион должно приходиться 5 ионов Fe2+. Следовательно, в точке эквивалентности концентрация ионов Fe2+ в 5 раз больше концентрации MnO4- -ионов, т. е. [Fe2+] = 5[MnO4-]. В то же время [Fe3+] = 5[Mn2+]. Поделив второе из этих равенств на первое, получаем:
и .= 0, 6E = 0,77 + 5 • 1,51,
E = (0,77 + 5 • 1,51)/6 = 1,39B.
В общем случае потенциал в точке эквивалентности рассчитывают по формуле
где а - число электронов, принятых окислителем; b - число электронов, отданных восстановителем.
) Расчет потенциала после точки эквивалентности. При введении 100,1 мл раствора KMnO4 (конец скачка) раствор кроме эквивалентных количеств ионов Fe3+ и Mn2+ содержит избыток ионов MnO4-. Концентрация железа (II) очень мала, поэтому:
и потенциал сис?/p>