Методичні вказівки до виконання розрахунко роботи дослідження за допомогою еом коливань системи з одним ступенем вільності

Информация - Разное

Другие материалы по предмету Разное

? розкладенні сили

, побудуємо (за принципом суперпозиції) аналітичне рішення диференціального рівняння, руху механічної системи.

При цьому встановимо, при якому раціональне значені аналітичне рішення визначається з 5% точністю по відношенню до “точного” рішення.

Співставлення рішень будемо проводити для контрольного моменту часу , який рекомендується вибирати із умови: .

 

  1. Складання диференціального рівняння вимушених коливань механічної системи.

 

Рівняння вимушених коливань заданої механічної системи (рис.1) складемо за допомогою рівняння Лагранжа ІІ-го роду:

,( )

де і - узагальнена координата та швидкість, і - кінетична і потенціальна енергії системи відповідно, - функція розсіювання, - узагальнена непотенціальна сила.

Складемо вираз кінетичної енергії системи в її довільному положенні, враховуючи, що тіло 1 виконує поступальний рух, а тіла 2 і 3 обертальний рух; при цьому швидкості усіх тіл виразимо через узагальнену швидкість :

;

;;;;

 

= .

У виразі та - моменти інерції тіл 2 і 3 відносно центральної осі.

Позначимо коефіцієнт =, де - зведена маса системи. Тоді:

.( )

Складемо вираз потенціальної енергії системи: , де - потенціальна енергія сил ваги, а - потенціальна енергія сил пружності, що діють на тіла системи.

Обчислемо потенціальну енергію системи в її довільному положенні як роботу потенціальних сил на переміщенні системи із довільного положення в положення статичної рівноваги:

;

,

де ; ;

тут , - статичні подовження пружин; , - зміна довжини відповідної пружини при відхиленні системи від стану статичної рівноваги; , - подовження пружини в довільному положенні системи.

Врахуємо, що , =, а в стані статичної рівноваги .

Вираз потенціальної енергії системи та її похідної мають вигляд:

;

.

При рівновазі системи () маємо:

, тобто .

Тоді вираз потенціальної енергії системи приймає вигляд:

=, ( )

де =.

Функцію розсіювання будемо вважати залежною від узагальненої швидкості , а її похідну представимо у вигляді:

,

де - коефіцієнт вязкості (дисипативний коефіцієнт).

До непотенціальних сил, що діють на систему, відноситься тільки збурююча сила , можлива робота якої ; тоді

.

Візьмемо відповідні похідні і складемо рівняння Лагранжа для заданої системи:

; ; 0; ;

=;

;

;

;

, ( )

де і .

Диференціальне рівняння ( ) представляє собою неоднорідне диференціальне рівняння другого порядку відносно узагальненої координати зі сталими коефіцієнтами.

Рішення задачі про дослідження вимушених коливань системи зводиться до рішення цього диференціального рівняння при заданих початкових умовах задачі. Оскільки у розглянутому випадку рух системи починається із стану статичної рівноваги, то початкові умови будуть нульовими:

при : ; . ( )

Як відомо, аналітичне рішення рівняння ( ) складається із суми двох рішень , де - загальне рішення однорідного рівняння, - частинне рішення неоднорідного диференціального рівняння.

Слід зауважити, що рішення в даному випадку (при відповідному підборі коефіцієнта ) практично згасає через . Тоді получається, що при .

Визначимо чисельні значення параметрів системи та коефіцієнтів в рівнянні ( ):

== 0,2 + 0 += 0,2 + 0,056 = 0,256т;

== + 10 = 3,56 + 10 = 13,6кН.м 1;

=7,29с 1; =0,861с;

= 0,456кН.с.м 1;

==0,891с 1.

Для перевірки вірності визначення коефіцієнту рекомендується підрахувати значення співмножника в рішенні при =5.0,861 = 4,31с:

.

Таке значення співмножника (наближене до нуля) в рішенні підтверджує факт, що вільні коливання системи на цей момент часу практично згасають; значить коефіцієнт знайдено вірно.

 

  1. Визначення амплітудних- та фазово-частотних характеристик системи.

 

Шляхом виведення, за допомогою ЕОМ, для заданої механічної системи з параметрами = 0,256т; = 13,6кН.м 1; = 0,456кН.с.м1 получимо (шляхом введення на друкарський пристрій принтер) амплітудно- та фазово-частотніх характеристики системи та приведемо їх на рис.2 і рис.3 (відповідно).

 

  1. Розкладання функції F(t) в ряд Фурє та визначення параметрів гармонік збурюючої сили.

 

Розкладемо функцію в ряд Фурє:

, ( )

де - номер гармоніки, а - число гармонік в розкладенні.

Визначимо (за допомогою ЕОМ) параметри гармонік: амплітуди , частоти та початкової фази .

Для заданої сили “прямокутного” типу з параметрами кН, значення параметрів гармонік наведені у табл.1.

 

Таблиця 1.

Номер гармоніки,

,

кН,

,

рад.10,7642020,2556030,15310040,10914050,085180

  1. Дослідження вимушених коливань механічної системи.

 

  1. Визначення (за допомогою ЕОМ) “точного” рішення диференціального рівняння. Аналіз рішення.

 

Визначимо за допомогою ЕОМ “точне” рішення диференціального рівняння для випадку, коли сила представлена однією гармонікою (=1). Два графіка функцій для відповідних випадків виводяться на екран ЕОМ. Перед виводом графіків на друкарський пристрій їх треба “промасштабувати”, тобто получити рішення на заданому відрізку інтегрування 0, де рекомендується задавати рівним 810. На рис.4 приведені вказані графіки функцій для заданої механічної системи. Лінія 1 відображає “точне” рішення, а лінія 2 рішення у випадку = 1 (тобто, коли ).

Із графіків видно, що функції получаються періодичними, тобто рух механіч