Методика решения иррациональных уравнений и неравенств в школьном курсе математики

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика

едней будет . Воспользовавшись подстановкой, получим .

Ответ: .

  1. Рациональность дробно-линейных иррациональностей

Аналогично предыдущему доказывается, что функция вида

, (3)

где , , и некоторые постоянные, а любое целое положительное число (дробно-линейная иррациональность), может быть при условии приведена к рациональному виду подстановкой

(4)

Иррациональная функция

(5)

рационализируется при помощи подстановки

(6)

где наименьшее общее кратное показателей радикалов , , …

Пример 2. Решить уравнение .

Решение. Будем искать корни данного уравнения в области (очевидно, что числа и не являются его корнями). Разделим обе части уравнения на :

.

Полученное уравнение в рассматриваемой области с помощью рационализирующей подстановки

сводится к смешанной системе

эквивалентной ему в этой области. Определив решения этой системы и и воспользовавшись подстановкой, находим корни исходного уравнения.

Ответ: .

  1. Рационализация биноминальных выражений

Можно доказать, что выражение

, (7)

где и постоянные, а показатели степеней , некоторые рациональные числа, допускает рационализирующие подстановки только в трех случаях, когда оказывается целым одно из чисел , или .

В этих случаях возможны следующие подстановки:

Если целое, то , где наименьшее общее кратное знаменателей чисел и .

Если целое, то , где знаменатель числа .

Если целое, то , где знаменатель числа .

Существование указанных трех рационализирующих подстановок доказывает возможность приведения к рациональному виду уравнений в первом случае и во втором и третьем случаях.

Пример 3. Решить уравнение .

Решение. Так как не является корнем уравнения, разделим обе его части на . Выделяется биномиальное выражение:

.

Имеет место третий случай рационализации ( и целое число). Следовательно, будем применять подстановку . Возводя обе части этого равенства в квадрат, получим , так что . Теперь с помощью подстановки и найденного значения получаем

и исходное иррациональное уравнение приводится к рациональному , или . Определив корни этого уравнения , и воспользовавшись подстановкой, находим

Ответ:

  1. Рационализация квадратичных иррациональностей посредством подстановок Эйлера

Квадратичной иррациональностью назовем функцию вида

, (9)

где и некоторые постоянные. Покажем, что это выражение всегда рационализируется одной из так называемых подстановок Эйлера. При этом мы, конечно, будем считать, что квадратный трёхчлен неотрицателен и не имеет равных корней (в противном случае корень можно заменить рациональным выражением).

  1. Сначала рассмотрим случай, когда дискриминант

    . В этом случае знак квадратного трёхчлена совпадает со знаком , и поскольку этот трёхчлен положителен (в силу условия равенство трёхчлена нулю невозможно), то .

  2. Таким образом, мы можем сделать следующую подстановку:

(или ) (10)

Подстановку (10) иногда называют первой подстановкой Эйлера. Докажем, что эта подстановка рационализирует функцию (9) в рассматриваемом случае. Возводя в квадрат обе части равенства

(заметим, что ), получим , так что

,

где функции и рациональные. Таким образом,

.

В правой части полученного равенства стоит рациональная функция.

  1. Рассмотрим теперь случай, когда дискриминант

    , то есть квадратный трехчлен имеет (различные) действительные корни и . Следовательно,

  2. .

Аналогично предыдущему доказывается, что в этом случае функция (9) рационализируется посредством подстановки:

, (11)

называемой часто второй подстановкой Эйлера.

Замечание 1. Рационализирующая подстановка (11) справедлива при условии . Следовательно, применяя эту подстановку при решении иррационального уравнения, необходимо проверить, не является ли значение корнем данного уравнения (иначе возможна потеря этого корня).

Замечание 2. Если , то в этом случае можно положить

(или ) (12)

Ответ: , .

Пример 4. Решить уравнение .

Решение. В данном уравнении дискриминант квадратного трехчлена положителен, корни его и . Найдем другие корни подстановкой

.

Применяя эту подстановку, необходимо проверить, не является ли значение корнем данного уравнения. Итак, корень данного уравнения.

Возводя в квадрат обе части равенства , получим , откуда . Теперь подставим это значение в исходное уравнение и последовательно получаем:

и исходное уравнение сводится к уравнению , или . Это уравнение имеет единственный действительный корень , тогда . Итак, исходное уравнение имеет два корня: и .

Ответ: , .

  1. Рационализация с помощью тригонометрических подстановок

Иногда подходящей заменой неизвестной иррациональное уравнение можно свести к тригонометрическому уравнению. При этом полезными могут оказаться следующие замены переменной. [17]

  1. Если в уравнение входит радикал

    , то можно сделать замену , или , .

  2. Если в уравнение входит радикал

    , то можно сделать замену tg t, или ctg t, .

  3. Если в уравнение входит радикал

    , т?/p>