Методика решения иррациональных уравнений и неравенств в школьном курсе математики
Дипломная работа - Педагогика
Другие дипломы по предмету Педагогика
едней будет . Воспользовавшись подстановкой, получим .
Ответ: .
- Рациональность дробно-линейных иррациональностей
Аналогично предыдущему доказывается, что функция вида
, (3)
где , , и некоторые постоянные, а любое целое положительное число (дробно-линейная иррациональность), может быть при условии приведена к рациональному виду подстановкой
(4)
Иррациональная функция
(5)
рационализируется при помощи подстановки
(6)
где наименьшее общее кратное показателей радикалов , , …
Пример 2. Решить уравнение .
Решение. Будем искать корни данного уравнения в области (очевидно, что числа и не являются его корнями). Разделим обе части уравнения на :
.
Полученное уравнение в рассматриваемой области с помощью рационализирующей подстановки
сводится к смешанной системе
эквивалентной ему в этой области. Определив решения этой системы и и воспользовавшись подстановкой, находим корни исходного уравнения.
Ответ: .
- Рационализация биноминальных выражений
Можно доказать, что выражение
, (7)
где и постоянные, а показатели степеней , некоторые рациональные числа, допускает рационализирующие подстановки только в трех случаях, когда оказывается целым одно из чисел , или .
В этих случаях возможны следующие подстановки:
Если целое, то , где наименьшее общее кратное знаменателей чисел и .
Если целое, то , где знаменатель числа .
Если целое, то , где знаменатель числа .
Существование указанных трех рационализирующих подстановок доказывает возможность приведения к рациональному виду уравнений в первом случае и во втором и третьем случаях.
Пример 3. Решить уравнение .
Решение. Так как не является корнем уравнения, разделим обе его части на . Выделяется биномиальное выражение:
.
Имеет место третий случай рационализации ( и целое число). Следовательно, будем применять подстановку . Возводя обе части этого равенства в квадрат, получим , так что . Теперь с помощью подстановки и найденного значения получаем
и исходное иррациональное уравнение приводится к рациональному , или . Определив корни этого уравнения , и воспользовавшись подстановкой, находим
Ответ:
- Рационализация квадратичных иррациональностей посредством подстановок Эйлера
Квадратичной иррациональностью назовем функцию вида
, (9)
где и некоторые постоянные. Покажем, что это выражение всегда рационализируется одной из так называемых подстановок Эйлера. При этом мы, конечно, будем считать, что квадратный трёхчлен неотрицателен и не имеет равных корней (в противном случае корень можно заменить рациональным выражением).
- Сначала рассмотрим случай, когда дискриминант
. В этом случае знак квадратного трёхчлена совпадает со знаком , и поскольку этот трёхчлен положителен (в силу условия равенство трёхчлена нулю невозможно), то .
Таким образом, мы можем сделать следующую подстановку:
(или ) (10)
Подстановку (10) иногда называют первой подстановкой Эйлера. Докажем, что эта подстановка рационализирует функцию (9) в рассматриваемом случае. Возводя в квадрат обе части равенства
(заметим, что ), получим , так что
,
где функции и рациональные. Таким образом,
.
В правой части полученного равенства стоит рациональная функция.
- Рассмотрим теперь случай, когда дискриминант
, то есть квадратный трехчлен имеет (различные) действительные корни и . Следовательно,
.
Аналогично предыдущему доказывается, что в этом случае функция (9) рационализируется посредством подстановки:
, (11)
называемой часто второй подстановкой Эйлера.
Замечание 1. Рационализирующая подстановка (11) справедлива при условии . Следовательно, применяя эту подстановку при решении иррационального уравнения, необходимо проверить, не является ли значение корнем данного уравнения (иначе возможна потеря этого корня).
Замечание 2. Если , то в этом случае можно положить
(или ) (12)
Ответ: , .
Пример 4. Решить уравнение .
Решение. В данном уравнении дискриминант квадратного трехчлена положителен, корни его и . Найдем другие корни подстановкой
.
Применяя эту подстановку, необходимо проверить, не является ли значение корнем данного уравнения. Итак, корень данного уравнения.
Возводя в квадрат обе части равенства , получим , откуда . Теперь подставим это значение в исходное уравнение и последовательно получаем:
и исходное уравнение сводится к уравнению , или . Это уравнение имеет единственный действительный корень , тогда . Итак, исходное уравнение имеет два корня: и .
Ответ: , .
- Рационализация с помощью тригонометрических подстановок
Иногда подходящей заменой неизвестной иррациональное уравнение можно свести к тригонометрическому уравнению. При этом полезными могут оказаться следующие замены переменной. [17]