Алгебра октав
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
дной формуле, разночтений возникнуть не должно.
б) кватернионы.
Кватернионы имеют строение:
и получены некоммутативным удвоением алгебры комплексных чисел:
.
Мнимая единица удвоения j не коммутирует с единицей i, поэтому сопряжение по ней требует сопряжения также и по i и по k:
.
Алгебраическое сопряжение в кватернионах, также как в комплексных числах, просто меняет знак у компонент при мнимых единицах:
.
То есть в кватернионах сопряжение по мнимой единице и алгебраическое сопряжение так же совпадают.
5 .Некоторые тождества для октав
Приведем основные тождества, применимые к октавам. Тождества базируются на понятии ассоциатора, коммутатора и йорданова произведения.
()=- ассоциатор;
- коммутатор;
- йорданово произведение.
Линеаризуя тождества, несложно получить, что
& .
Таким образом, ассоциатор есть кососимметрическая функция от x, y, z. В частности:.
.
Алгебры, удовлетворяющие этому условию, называются эластичными. Таким образом, алгебра октав эластична. Покажем на основе эластичности тождество:
,
.
В силу того, что для октав всегда есть действительное число, а в силу эластичности, получаем:
.
Таким образом, для эластичной алгебры справедливо:
.
Функция Клейнфелд:
.
Лемма1. - кососимметрическая, для любой пары равных аргументов
.
В силу правой альтернативности
.
Во всякой алгебре справедливо тождество:
.
Достаточно раскрыть все ассоциаторы. Обозначив левую часть этого равенства через , получим:
Поменяв местами: получим: .
Используя , получим, что при любых одинаковых аргументах. Из этого следуют тождества:
1) ;
2) ;
3) ;
4) .
Тождества Муфанг.
Правое тождество Муфанг: ;
Левое тождество Муфанг: ;
Центральное тождество Муфанг: .
Вопросы о строении простых алгебр в том или ином многообразии являются одними из главных вопросов теории колец. Мы уже знаем один пример простой неассоциативной альтернативной алгебры - это алгебра Кэли-Диксона. Оказывается, что других простых неассоциативных альтернативных алгебр не существует. Этот результат доказывался с нарастанием общности на протяжении нескольких десятков лет разными авторами: вначале для конечномерных алгебр (Цорн, Шафер), затем для алгебр с нетривиальным идемпотентом (Алберт), для альтернативных тел (Брак, Клейнфелд, Скорнаков), для коммутативных альтернативных алгебр (Жевлаков) и т. д. Наибольшее продвижение было получено Клейнфелдом, доказавшим, что всякая простая альтернативная неассоциативная алгебра, не являющаяся ниль-алгеброй характеристики 3, есть алгебра Кэли-Диксона. Окончательное описание простых альтернативных алгебр осуществилось после появления теоремы Ширшова о локальной нильпонентности альтернативных ниль-алгебр с тождественными соотношениями.
6. Теорема Гурвица
6.1 Нормированные линейные алгебры
Пусть -линейная алгебра ранга п над полем действительных чисел и х, у А. Если e1, e2, ..., еn - базис А, то:
х = х1е1 + х2е2 + .... + хпеп, у = y1е1 + y2е2 + .... + yпеп. .
Определение. Скалярным произведением элементов х, у А называется сумма х1у1 + х2у2 + ... + хпуп.
Обозначение скалярного произведения:
(х, у) = х1у1 + х2у2 + ... + хпуп.
В частности:
(х, х) = ++… +.
Скалярное произведение элементов х, уА должно удовлетворять общим условиям скалярного произведения в линейных пространствах:
1)для любых х, у А (х, у) ? 0 и (х, х) = 0 тогда и только тогда, когда х = 0;
2)для любых х, у А имеет место (х, у) = (у, х);
3)для любых х, у А и А R имеет место (?х, у) = (х, ?у) = ?(х, у):
4)для любых х, у, z А имеет место (х, у + z) = (х, у) + (х, z).
Определение. Линейная алгебра называется нормированной, если в ней можно ввести скалярное произведение для любых х, у А таким образом, чтобы выполнялось равенство:
(ху, ху) = (х, х)(у, у) . ()
Если положим =|х|. то равенство () записывается в виде:
|ху| = |х| |у|.
Из (ху, ху) = (х, х)(у, у) следует, что если ху = 0, то либо х = 0, либо у = 0. В самом деле, тогда
(0, 0) = (х, х)(у, у) (х, х)(у, у) = 0,
откуда либо (х, х) = 0, либо (у, у) = 0. А тогда либо х = 0, либо у =0.
Лемма 1. Любой элемент линейной алгебры молено разложить на два слагаемых, одно из которых пропорционально какому-либо ненулевому элементу, а другое ортогонально ему.
Пусть e А, и ue, а - произвольный элемент из А. Покажем, что найдется такое k R, что a - kee. Тогда:
a - kee (a - ke, e) = 0 (a, e) - k(e, e) = 0.
Скалярное, произведение (е, е) ? 0, так как е ? 0. Тогда а = kе + (а - kе) = kе + u, где u = a - kee.
Следствие. Если - линейная алгебра с единицей 1, то для любого а А имеет место а = k1 + u, где u 1.
Пример 1. Пусть (C, +, .R, .) - поле комплексных чисел. Базисом в С являются 1, i. Скалярное произведение двух комплексных чисел z =а+bi и u =с+ di определим как (z, u) = (zu + u).
Так как
zu = (а+ bi)(с- di) = (ac+bd)+(bc-ad)i,
u= (с+ di)( а-bi) = (ac+bd)+(ad-cb)i,
то (z, u) = (zu + u) = ac+bd.
В частности,
(z, z) = (z + z) = z= |z|2 = a2+b2.
Так как,
zu = (ac-bd)+(ad+bc)i,
то (zu, zu) = ((zu)*()+( zu)( ))=( zu)()=|zu|2 = (ac-bd)2+( ad+bc)2=
a2с2-2abcd + b2d2 + a2d2 + 2abcd + b2c2 = a2c2 + a2d2 + b2c2 + b2d2 =
a2 (c2 + d2) + b2 (c2 + d2) = (a2 + b2) (c2 + d2) = | z |2 | u |