Магнетохімія. Магнітні властивості речовин
Информация - Химия
Другие материалы по предмету Химия
?бластей, кожна з яких мимовільно намагнічена до насичення. Але напрямок намагнічування для різних по-різному, так що внаслідок хаотичності розподілу цих областей тіло в цілому виявляється у відсутності зовнішнього поля не намагніченим.
Під впливом зовнішнього поля відбувається перебудова і перегрупування таких ”областей мимовільного намагнічування”, у результаті якої одержують перевагу ті області, намагнічування яких паралельно зовнішньому полю, і речовина в цілому виявляється намагніченим.
При накладенні поля Н частина атомів області В, у якій намагнічування перпендикулярне до поля, на границі її з областю А, у якій намагнічування рівнобіжне полю, повертається так, що напрямок їхнього магнітного моменту стає рівнобіжним полю. У результаті область А. намагнічена паралельно зовнішньому полю, розширюється за рахунок тих областей, у яких напрямок намагнічування утворить великі кути з напрямком поля, і виникає переважне намагнічування тіла по напрямку зовнішнього поля. У дуже сильних зовнішніх полях можливі і повороти напрямку орієнтації всіх атомів у межах цілої області.
При знятті (зменшенні) зовнішнього поля відбувається зворотній процес розпаду і дезорієнтація цих областей, тобто розмагнічування тіла. Через великі в порівнянні з атомами розміри ”областей мивовільного намагнічування” як процес намагнічування їх, так і зворотний процес дезорієнтації відбувається з набагато великими утрудненнями, ніж встановлення орієнтації дезорієнтації окремих молекул чи атомів, що має місце в парамагнітних і діамагнітних тілах. Цим і пояснюється намагнічування і розмагнічування феромагнетиків від зміни зовнішнього поля, тобто гістерезис феромагнітних тіл.
Матеріали з низьким Нk називаються магніто-мякими, вони характеризуються малими значеннями магнітної проникності. Нk це напруга оберненого магнітного поля, яке необхідно прикласти до речовини, щоб досягти повного розмагнічення матеріалу. Магніто-жорсткими матеріалами називаються матеріали з високим коеруцитивним полем і великою залишковою намагнічуваністю. Їх використовують в ролі постійних магнітів. В кристалах феромагнітних матеріалів результуючий магнітний момент розміщується вздовж деяких певних напрямків. У заліза, наприклад, такі напрямки є паралельними осям елементарної комірки кубічної гратки. Їх називають осями легкого намагнічування.
При вивченні магнітних явищ в речовинах, особливо у феромагнетиках, були поставлені експерименти по встановленню звязку між механічним і магнітним моментом речовини.
Дослід Ейнштейна і де Гааза. Довгий залізний стержень підвішували на тонкій нитці, поміщали в поле соленоїда, через який для створення магнітного поля пропускали струм. При виникненні магнітного поля стержень намагнічувався і обертався на нитці. При цьому можна фіксувати кут повороту стержня. Змінюючи напрям струму в соленоїді, змінювався напрям кута повороту на протилежний. Такий поворот стержня в магнітному полі показує на безпосередній звязок між механічним і магнітним моментом речовини. Цей звязок виражається гіромагнітним співвідношенням
?: ? =.
для електронів, що рухаються по орбіталям, має вираз:
=
для електронів за рахунок спінового руху:
?s =
Теорія Вейса. Подальша теорія феромагнетизму звязана з іменем Вейса. Ідея Вейса полягає в тому, що в феромагнетиках є деяке внутрішнє магнітне поле, величина якого приблизно рівна спіновій намагнічуваності. Феромагнітними виявляються атоми перехідних металів. Спільним для цих атомів є те, що вони мають недобудовані внутрішні d- i f-електронні оболонки. Валентні електрони атома металу усуспілюнюються в кристалічній решітці, утворюючи так званий електронний газ. За феромагнетизм повинні бути відповідальні не валентні електрони, які здійснюють звязок між іонами в решітці, а ті, що входять у недобудовані d- i f-електронні оболонки. В теорії Вейса показано, що природа сил, що приводять до впорядкованого розміщення спінів цих електронів носить електростатичний характер, і подібні за своїми характеристиками до сил хімічних звязків. Формула Гейтлера-Лондона для утворення молекули Н2:
ЕS = ; EA = ,
K кулонівський інтеграл, описує енергію взаємодії електронів із своїми ядрами;
А обмінний інтеграл, описує взаємодію кожного електрона з обома ядрами, тобто рух кожного електрона навколо обох ядер;
S інтеграл перекривання, який показує степінь перекривання електронних оболонок атомів.
K в першому наближенні характеризує енергію ізольованих атомів водню, а обмінний інтеграл А енергію хімічного звязку між атомами. За абсолютною величиною |K| < |A|.
У випадку симетричної функції ?S (електрони в молекулі мають антипаралельні спіни), знак обмінного інтегралу відповідає притягуванню атомів і утворенню молекули. У випадку ж антисиметричної хвильової функції ?А (тобто при паралельних спінах електронів обох атомів) знак обємного інтеграла відповідає відсутності хімічного звязку між атомами водню.
Аналогічну інтерпретацію можна перенести і для пояснення феромагнетизму. Якщо спіни взаємодіючих електронів антипаралельні, то обмінний інтеграл A 0 і у формулі Гейтлера-Лондона між K i A використовують знак ””, і тому енергія взаємодії між елект