Лазерный однокомпонентный измеритель вибрации
Курсовой проект - Физика
Другие курсовые по предмету Физика
чка на выходе ОУ:
.3 Сравнение методов расчета Мюллера и Джонса
Задание:
Пусть левоциркулярно поляризованное излучение с единичной интенсивностью, которое может описываться соответственно либо вектором Джонса, либо вектором Стокса
, {1, 0, 0, 0},
падает га оптическое устройство ОУ (рис. 3.2.), состоящее из последовательно установленных:
) линейного поляризатора - П1;
) линейной фазовой четвертьволновой пластины - ?/4;
3) линейного поляризатора - П2;
) правоциркулярной фазовой 90- пластины - П3;
Необходимо рассчитать вектор Стокса и Джонса на выходе ОУ.
Решение:
. Матрица Мюллера линейного поляризатора: ?1=90:
. Матрица Мюллера для полуволновой фазовой пластины ?/2: ?2=135
. Матрица Мюллера для четвертьволновой фазовой пластины ?/4: ?3=135
для правоциркулярной фазовой 90-пластины:
4. Матричное уравнение для прохождения луча через все оптические элементы:
. Матрица Джонса для всех элементов ОУ:
для линейного поляризатора П1: ?1=90
для четвертьволновой пластины - ?/4: ?2=135
для линейного поляризатора П2: ?3=135
для правоциркулярной фазовой 90-пластины:
Выводы
Таким образом, выполнив расчеты по методам Мюллера и Джонса, можем их сравнить.
Расчеты по методам Мюллера и Джонса имеют много общего. В обоих случаях свет описывается стандартным способом и ответ получается с помощью элементарных действий матричной алгебры, выполняемых по заданным правилам. Требуется лишь отыскать в таблицах нужные векторы и матрицы и произвести умножение.
В обоих типах расчета используются матрицы совокупности, представляющие собой наиболее сжатую запись самых существенных свойств данной последовательности оптических устройств. Кроме того, и в том и в другом методе употребляются матрицы поворота. Однако между этими методами имеются и важные различия:
. Расчет Мюллера применим и для таких систем, в которых происходит деполяризация пучка, тогда как расчет Джонса в этом случае неприменим.
. Расчет Мюллера имеет лишь феноменологическое обоснование и не связан с электромагнитной теорией, тогда как расчет Джонса выводится непосредственно из этой теории.
. Расчет Джонса позволяет учитывать абсолютную фазу, в расчетах же Мюллера фаза совершенно не рассматривается.
. Расчет Джонса применим к рассмотрению комбинации двух когерентных пучков. Расчет Мюллера для этого не пригоден или связан с очень большими трудностями.
. В методе Мюллера первый элемент вектора Стокса непосредственно характеризует интенсивность. Вектор, используемый в методе Джонса, непосредственно интенсивности не содержит; чтобы ее определить, надо найти сумму квадратов элементов.
. Элементы матриц Джонса связаны с амплитудой пропускания, а элементы матриц Мюллера - с интенсивностью пропускания.
. Метод Джонса удобен для решения задач, связанных с большим числом оптических устройств, регулярным образом объединенных в серии. Он дает точный ответ, выраженный через n - число таких устройств. Метод Мюллера для этой цели неудобен.
. Матрицы Джонса для совокупности поглощающих, а также непоглощающих и недеполяризующих поляризаторов и фазовых пластинок не содержат избыточной информации. Матрицы имеют по четыре элемента и содержат восемь констант, ни одна из которых не является функцией какой-либо другой. Матрицы Мюллера для таких совокупностей содержат много избыточной информации: в них входят шестнадцать констант и только семь из них независимы.
. Из матриц Джонса для двупреломляющих дихроичных устройств можно с помощью дифференцирования получить информацию о свойствах, не зависящих от размера устройства. В методе Мюллера эта возможность практически отсутствует.
Литература
лазерный однокомпонентный измеритель вибрация
1.А. Джерард, Д.М. Бери. Введение в матричную оптику. М. - Мир, 1965. - 341с.
.Ванюрихин А.Н., Герчановская В.П. Оптико-электронные поляризационные устройства. Издательство "Техника", К., 1989.- 160с.
.Ватсон Г.Н. Теория бесселевых функций. - М.: ИЛ, 1949. - Т. I. -798с.
.Землянский В. М. Лазерный однокомпонентный измеритель вибрации.
А. с. СССР № 1341498, приоритет от 31.10.1983
.Интернет:
,"> Лазерные измерители вибрации, виброметры
">
">www.physics.org.ua/lectures/3/difr-1.doc
6.Ландсберг Г.С. Оптика. Учебн. пособие: Для вузов. - 6-е узд., стерео. - М.: ФИЗМАТЛИТ, 2003. - 848с.
.Макаров Е. Г. Mathcad: учебный курс. - Издат.: Питер, 2009. - 384c.
.Р. Кольер, К. Беркхарт, Л. Лин "Оптическая голография", "Мир", Москва, 1973. - 686c.
.Сивухин Д. В. Общий курс физики. Том 4. Оптика, 1980. - 768c.
.У. Шерклифф. Поляризованный свет: М. - Мир, 1965. - 185с.