Критерій Байєса-Лапласа при експоненційно розподілених даних для множини оптимальних рішень

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

 

 

 

 

 

 

 

 

 

 

 

КУРСОВА РОБОТА

на тему:

Критерій Байєса-Лапласа при експоненційно розподілених даних для множини оптимальних рішень

 

Зміст

 

Вступ3

Розділ 1. Аналіз літературних і електронних джерел5

1.1 Постановка задачі5

1.2 Критерії прийняття рішень5

1.3 Критерій Баєса-Лапласа6

Розділ 2. Математичний опис8

Розділ 3. Розробка програми11

3.1 Вибір програмного середовища11

3.2 Розробка інтерфейсу13

3.3 Розробка програмного коду15

Висновки24

Список літератури25

 

Вступ

 

Прийняття рішень є найважливішим компонентом систем управління проектами (УП), коли необхідно вирішувати задачі планування, проектування, виробництва, розподілу і регулювання ресурсів (трудових, матеріальних, устаткування) з урахуванням всіх обмежень (технічних, бюджетних, тимчасових). Керівники проектів рідко добиваються успіхів, якщо не володіють або не використовують методи ухвалення обґрунтованих рішень. Прийняття рішень найвідповідальніша і інтелектуальна сфера діяльності людини і, в першу чергу, керівника будь-якого рангу.

Задачі вибору якнайкращих варіантів при проектуванні систем в умовах обмеженого фінансування є однією з найтиповіших для використовування методів прийняття рішень.

Задачі проектування, що зустрічаються на практиці, які вимагають застосування методів прийняття рішень, виключно різноманітні. Більшість задач звязані з вибором одного або декількох альтернативних варіантів з урахуванням можливих ситуацій, для їх вирішення рідко застосовуються методи математичного програмування унаслідок відсутності або невірогідності початкових даних. [1]

Існують різні ознаки класифікації задач прийняття рішень. По ступеню або умовам, в яких ухвалюються рішення, розрізняють наступні види задач.

1. Прийняття рішень в умовах повної невизначеності, коли роль початкових даних виконують інтуїція і досвід експертів.

2. Прийняття рішень в умовах невизначеності, в даному випадку відомі окремі характеристики альтернативних варіантів в різних ситуаціях, але відомості про ймовірність ситуацій відсутні. При цьому зміна ситуацій може носити нейтральний характер (гра з природою) або протидіючий конфліктний характер.

3. Прийняття рішень в умовах часткової невизначеності або ризику, коли відома ймовірність можливих ситуацій для реалізації варіантів.

4. Прийняття рішень в умовах визначеності, в даному випадку вся необхідна інформація точно відома.

Більшість реальних інженерних задач містить в тому або іншому вигляді невизначеність. Можна навіть стверджувати, що рішення задач з урахуванням різного виду невизначеностей є загальним випадком, а прийняття рішень без їх урахування - приватним. Проте, через концептуальні і методичні труднощі в даний час не існує єдиного методологічного підходу до рішення таких задач. Проте, накопичене достатньо велике число методів формалізації постановки і прийняття рішень з урахуванням невизначеностей. При використанні цих методів слід мати на увазі, що всі вони носять рекомендаційний характер, і вибір остаточного рішення завжди залишається за людиною (ЛПР).

Невизначені чинники, закон розподілу яких невідомий, є найхарактернішими при дослідженні якості адаптивних систем. Саме на цей випадок слід орієнтуватися при виборі гнучких конструкторських рішень. Методичний облік таких чинників базується на формуванні спеціальних критеріїв, на основі яких ухвалюються рішення. Критерії Вальда, Севіджа, Гурвіца і Лапласа вже давно і міцно увійшли до теорії прийняття рішень.

Критерій Байєса Лапласа враховує кожне з можливих наслідків всіх варіантів рішень.

Критерій Байєса Лапласа предявляє до ситуації, в якій ухвалюється рішення, наступні вимоги:

ймовірність появи стану Vj відома і не залежить від часу;

ухвалене рішення теоретично допускає нескінченно велике

кількість реалізацій;

допускається деякий ризик при малих числах реалізацій. [2]

Розберемось детальніше з БЛ критерієм в даній курсовій роботі.

Розділ 1. Аналіз літературних і електронних джерел

 

1.1 Постановка задачі

 

Розробити програмний продукт для формування множини оптимальних рішень за критерієм Байєса Лапласа. Матрицю рішень сформувати за експоненціальним законом розподілу. Дослідження працездатності схеми, за якою формується множина оптимальних рішень.

 

1.2 Критерії прийняття рішень

 

Критерій прийняття рішень - це функція, що виражає переваги особи, що ухвалює рішення (ЛПР), і, що визначає правило, по якому вибирається прийнятний або оптимальний варіант рішення.

Всяке рішення в умовах неповної інформації приймається з урахуванням кількісних характеристик ситуацій, в якій ухвалюються рішення. Найчастіше приймаються наступні критерії прийняття Севіджа, критерій Гурвіца, критерій Ходжа-Лімона, критерій Гермейєра, відповідності з рішень: мінімаксний критерій, критерій Байєса Лапласа, критерій якою-небудь оцінною інформацією, вибір якої повинен здійснюватися критерій добутків (произведений), складовий критерій Байєса Лапласа мінімаксний.

Ці критерії можна використовувати по черзі, причому після обчислення їх значень серед декількох варіантів доводиться довільним чином виділяти деяке остаточне рішення. Що дозволяє, по-перше, краще проникнути у всі внутрішні звязки проблеми прийняття рішення