Автомобильные двигатели внутреннего сгорания

Дипломная работа - Транспорт, логистика

Другие дипломы по предмету Транспорт, логистика

следовательно, и большей литровой мощности двигателя.

 

Рис. 2.1 Возможные схемы расположения клапанов: а-в двухклапанной головке; б-в трехклапанной головке; в-в четырехклапанной головке

 

Если сегодня максимальная литровая мощность двигателей легковых автомобилей с двумя клапанами на цилиндр составляет 40-52 кВт/л, то многоклапанные двигатели серийных автомобилей имеют литровую мощность порядка 75 кВт/л и выше. Четырехклапанные головки блока позволяют увеличить проходные сечения в клапанах по сравнению с двухклапанными головками до 30%, а при использовании шатровых камер сгорания и наклонных клапанов эта разница увеличивается еще больше. Кроме того, с увеличением количества клапанов уменьшается диаметр каждого из них, что приводит к повышению жесткости головки и улучшению ее охлаждения.

Вместе с тем двухклапанные двигатели продолжают иметь широкое распространение, а подавляющее большинство дизелей оснащены механизмом газораспределения подобного типа.

Вторым направлением совершенствования конструкции механизма газораспределения является переход от профилирования кулачков по заданным законам образования профиля кулачка к профилированию кулачка в соответствии с заданным законом его движения (безударные кулачки). Это направление связано с развитием современной тенденции повышения форсирования двигателей за счет повышения частоты вращения до 7000-8000 мин-1. Для двигателя с высокой частотой вращения, наряду с определенным профилем кулачка, крайне важно обеспечить такой закон движения клапана, который бы не создавал резких (мгновенных) изменений скорости и особенно ускорений движения клапана. Чтобы получить безударную работу механизма газораспределения двигателя, необходима высокая точность обработки кулачка. Поэтому безударные кулачки получили широкое распространение в основном на двигателях легковых автомобилей.

Третье направление связано с оснащением механизма газораспределения, особенно четырехклапанных двигателей, гидравлическими толкателями, что позволяет отказаться от теплового зазора в механизме газораспределения.

 

2.4 Расчёт клапанных пружин

 

Мгновенные открытие и закрытие клапана позволяют получить максимальное время-сечение, но даже при незначительных массах деталей механизма газораспределения приводят к возникновению больших сил инерции. В связи с этим при проектировании органов газораспределения подбирают такой профиль кулачка, который, обеспечивая достаточное наполнение цилиндра, вызывает допустимые по величине силы инерции.

Профиль кулачка обычно строят в соответствии с выбранным законом образования профиля, что обеспечивает получение относительно простых в изготовлении кулачков.

В современных автомобильных двигателях применяют следующие виды кулачков: выпуклый, тангенциальный, вогнутый и безударный.

На рис. 2.3 представлены наиболее распространенные кулачки:

а) выпуклый (рис. 2.3, а) - профиль образован дугами двух радиусов r1 и r2;

б) тангенциальный (рис. 2.3, б) - профиль образован с помощью двух прямых, касательных к начальной окружности r0 в точках А и А' и дуги радиусом r2.

 

Рис. 2.3 - Построение профиля кулачка

 

Выпуклый профиль кулачка можно применять для подъема плоского, выпуклого и роликового толкателей, а тангенциальный-главным образом для роликовых толкателей.

Профиль кулачка строят от начальной окружности. Ее радиус г0 выбирают из условия обеспечения достаточной жесткости механизма газораспределения в пределах r0 = (1.5-2.5)hкл max, а для двигателя с наддувом-до r0 = (3-4)hкл max.

Величину угла ?p0 определяют в соответствии с выбранными фазами газораспределения. Для четырехтактных двигателей

 

(2.8)

 

где ?пр-угол предварения открытия клапана; ?зп-угол запаздывания закрытия клапана.

Точки А и А' являются точками начала открытия и конца закрытия клапана. Точку В находят по величине максимального подъема толкателя hт max. Без учета зазоров, для схем прямого воздействия на клапан hт max = hкл max, а при наличии рычага или коромысла

 

hт max = hкл max(lт/lкл),

 

где lт и lкл - длина плеч коромысла, прилегающих соответственно к толкателю и клапану. Отношение lт/lкл выбирается по конструктивным соображениям и изменяется в пределах 0.50 - 0.96.

Для построения профиля кулачка (см. рис. 4.3) по выбранным или заданным значением hт max и r0 задаются величиной r1 (или r2) и для обеспечения сопряжения дуг определяют значение r2 (или r1).

Для тангенциального профиля кулачка r1 = ?, а радиус (мм) при вершине кулачка

 

(2.9)

 

Для выпуклого профиля кулачка

 

(2.10)

(2.11)

где а= r0 + hт max - r2, мм; b=rl-r0-hт max, мм.

 

При определении r1 значение r2 принимают по технологическим соображениям r2?1.5 мм, а при расчете r2 принимают r1 = (8-20)hт max. Выбор слишком малого значения r1 может привести к получению по формуле (4.11) отрицательного значения r2. В этом случае необходимо повторить расчет, выбрав большее значение r1.

Для обеспечения зазора в клапанном механизме тыльную часть кулачка выполняют радиусом rк, меньшим радиуса r0 на величину зазора ?S: rк = r0-?s. Величина ?s включает в себя температурный зазор и упругие деформации механизма газораспределения. Для впускных клапанов ?s =(0.25-0.35) мм, а для выпускных-?s =(0.35-0.50) мм. Сопряжение окружности радиусом rк с дугами радиусом r1 или прямыми (r1=?) производится по параболе или по дугам определенных радиусов.

В зависимости от выбранного профиля кулачка и типа то?/p>