Изучение глубинного строения и состава земной коры
Дипломная работа - Геодезия и Геология
Другие дипломы по предмету Геодезия и Геология
оводимости в стеклах серий Li2O - Li2P O3 и Li2S - LiPO3 [Соколов и др., 2003] показало, что перенос электрического заряда в стеклах этих систем обусловлен миграцией ионов лития. На основании данных, полученных при исследовании ИК спектров поглощения, плотности, микротвердости, скорости ультразвука и т. п., предложена интерпретация концентрационной зависимости электрической проводимости. Наблюдаемое возрастание электропроводности (более чем в 1000 раз при 25С по отношению к чистому LiPO3) в стеклах системы Li2S - LiPO3 объяснено образованием серосодержащих полярных структурно-химических группировок, энергия диссоциации которых ниже, чем у аналогичных оксидных полярных фрагментов структуры. Результатом этого является увеличение количества ионов лития, участвующих в процессах электропереноса, которое происходит за счет увеличения степени диссоциации полярных структурно-химических единиц.
С использованием активных электродов (амальгам соответствующих щелочных металлов) изучена температурная зависимость электрической проводимости стеклообразных метафосфатов лития, натрия и калия [Соколов и др., 2003]. Падение электрической проводимости в ряду LiPO3 - NaPOз -КРОз объясняется тем, что в метафосфате лития электрический ток переносят ионы лития, в то время как в NaPOз и КРОз в переносе электричества наряду с ионами щелочных металлов мигрируют протоны, образующиеся при диссоциации примесной воды. Излом на температурной зависимости электропроводности КРОз интерпретирован как результат смены вида носителя заряда: высокотемпературная (>373 К) проводимость обусловлена преимущественно миграцией ионов калия, а низкотемпературная - протонов.
Значительное число работ посвящено изучению главнейших представителей силикатов с непрерывными цепочками тетраэдров (Si, Al)O4 - амфиболов и пироксенов. Наблюдаемые в амфиболах аномальные изменения электропроводности в некотором интервале температур авторы [Пархоменко и др., 1974] объясняют процессом дегидратации. В то же время в работе [Лапидес и др., 1970] при исследовании электропроводности амфиболов авторы также обнаружили аномальную область, где наблюдается эффект постоянства проводимости в рибекитах при 520 C , который они объясняют наличием оксония. В арфведсоните же наблюдается нормальное для ионной проводимости кристаллов повышение электропроводности с ростом температуры.
Как показали исследования Э.И.Пархоменко и др. [1974], самыми высокими значениями сопротивления характеризуются амфиболы тремолит и антофиллит, в составе которых, кроме SiO2 содержатся соответственно оксиды MgO, CaO и MgO, FeO. Необходимо отметить, что катионы железа в антофиллите, как правило, имеются в малом количестве. Минералы этой группы, отличающиеся повышенным содержанием в них суммарного количества оксидов железа по сравнению с предыдущими, имеют несколько повышенные значения проводимости в области примесной и собственной проводимости. А щелочно-железистые амфиболы - рибекит и родусит - характеризуются самыми низкими значениями сопротивления, особенно при высоких температурах. На основании новых экспериментальных данных в работе [Хоменко и др., 1986] предложена модель переноса зарядов в амфиболах, включающая Fe2+- донор, Fe3+ -акцептор и два атома кислорода, участвующих в процессе переноса электрона и одновременно создающих потенциальный барьер при межионном переходе. Обсуждая возможные механизмы переноса в ильваите, авторы [Guttler et all.,, 1988] отмечают влияние на перенос заряда дефектов и порядка - беспорядка в двойных октаэдрических цепочках кристаллической структуры минерала.
Минералы из группы пироксенов, несмотря на идентичность структуры, образуют широкий спектр значений электропроводности, энергии активации и коэффициента электропроводности, что обусловлено, в частности, процессами изоморфизма [Пархоменко, 1984; Пархоменко и др.,1974; 1979]. Наибольшим сопротивлением из группы пироксенов обладает энстатит. Это обусловлено параметрами катионов магния: большим его зарядом при малом ионном радиусе и низкой поляризуемостью, что создает высокую энергию его закрепления в кристаллической решетке.
Геденбергит относится к числу наиболее проводящих силикатов вследствие высокого содержания в нём катионов железа. По значениям электрических параметров к нему примыкает эгирин, в котором находится значительное количество железа в сочетании с катионами натрия. Промежуточное положение занимают сподумен и жадеит.
При измерении электропроводности энстатита была исследована ее связь с полиморфизмом при высоких термодинамических параметрах [Хитаров и др., 1978]. Рассмотрение электропроводности энстатита с позиций ее зависимости от парциального давления кислорода, поскольку последнее контролирует концентрацию точечных дефектов в минералах, позволило Стокеру [Stoker, 1978] предложить несколько моделей электропроводности. Установлено, что для модели переноса зарядов одним типом дефектов наклон кривой зависимости концентрации дефектов от давления кислорода не согласуется с наклоном кривой, полученной при измерениях на природных энстатитах. Причиной этого несоответствия автор считает присутствие в кристалле большего количества дефектов, чем предполагается при учете условия зарядовой нейтральности кристалла, или что заряды переносятся несколькими типами дефектов. На этом основании делается вывод, что к экспериментальным значениям энергии активации необходимо относится осторожно.
Сопоставление анализируемого экспериментального материала по этим двум груп