Зонирование территории по степени риска цунами

Дипломная работа - Безопасность жизнедеятельности

Другие дипломы по предмету Безопасность жизнедеятельности



?арето конечно. В этом случае элементы множества Парето можно выделить, используя простой перебор и сравнение решений по определению.

В случае же когда пиксель можно охарактеризовать двумя параметрами, данная задача может быть решена графически. После расчета множества Парето эксперт выделяет те пиксели, которые оптимальны для использования, например пиксели, значения параметров которых попадают в некоторый определенный экспертом интервал.

Для расчета множества Парето была разработана программа на языке C++, осуществляющая перебор и сравнение всех возможных решений. В результате выполнение алгоритма происходит не более сравнений решений, где - число пикселей. Данные организованы в виде списка. Если при сравнении получаем доминируемое решение, то оно удаляется из списка и в дальнейшем в сравнении не участвует, что приводит к сокращению числа операций.

База данных. Исходные данные хранятся в файле "data. txt". Каждому пикселю соответствует три позиции:

порядковый номер пикселя;

оценка стоимости строительства объекта (в эту оценку может помимо непосредственной стоимости строительства объекта на рассматриваемом участке также включаться стоимость строительства дорог необходимых для функционирования объекта, стоимость вырубленных лесов и т.д.);

оценка риска возникновения цунами, приводящего к разрушению объекта.

Рассмотренная модельная береговая территория была разбита на 23 пикселя. В соответствие каждому пикселю поставлены значения двух (упомянутых выше) характеристик (критериев):

стоимость строительных работ (определяется в десятибалльной системе),

риск возникновения цунами сейсмической природы с высотой волны превышающей некоторый критический уровень в течение некоторого промежутка лет.

Описание расчетов по программе

На рисунке 3.1 представлены значение параметров для каждого пиксела - в первой строке: номер пикселя (для наглядности выделен светло-серым цветом) и оценка риска наводнения, вторая строка - стоимость.

Для выделения оптимальных пикселей минимизируется риск и стоимость. С помощью программы выделены решения являющиеся Парето оптимальными (на рисунке представлены темно серым цветом).

Интерпретация результатов расчета

На рисунке 3.1 пиксель с номером 3 пригоден для строительства цехов по переработке рыбы, где, например, используется более дорогое холодильное оборудование (здесь возможна заморозка и складирование).

Пиксели с номерами 1, 2, 13 характеризуются высокой степенью безопасности, поэтому они пригодны для строительства крупных цехов с использованием автоматизированных линий изготовления продукции.

10,120,130,240,1554950,260,270,380,4554590,1100,2110,3120,268 58130,1140,2150,5546160,2170,156180,2190,374200,4210,385220,45230,19Рис.3.1 Карта модели защищаемой береговой зоны.

Таким образом, разработана методика зонирования прибрежной территории по степени опасности наводнений, ядром которой служит расчет множества Парето.

Заключение

Выполнено обоснование модели зонирования территории по степени опасности. Разработаны алгоритм и программа для проведения расчетов.

Разработана методика зонирования защищаемых территории по степени опасности наводнений. Методика основана на технологии расчета множества Парето, по которому в дальнейшем эксперт выбирает оптимальный участок для строительства гидротехнических объектов.

Приведен пример зонирования береговой территории по степени опасности. Предлагаемое алгоритмическое и методическое обеспечение позволяет повысить эффективность защищаемых мероприятий для береговых территорий в критериях "риск-стоимость".

Список используемых источников

1.Феллер В. Введение в теорию вероятностей и ее приложения. В 2-х томах. Т.1: Пер. с англ. - М.: Мир, 1984. - 528 с.

2.Питер Джексон. Введение в экспертные системы. - Москва: "Вильямс", 2001. - 662 с.

.Кириллова С.В. Вычислительный эксперимент в задачах оценки цунами-опасности // Приложение к журналу "Открытое образование". Красноярск, 2006. - С.83-88

.Белолипецкий В.М., Шокин Ю.И. Математическое моделирование в задачах охраны окружающей среды. - Новосибирск: Инфолио-пресс, 1997. - 240 с.

.Симонов К.В., Перетокин С.А., Щемель А.Л., Болотина С.В. Алгоритмические средства обработки больших массивов данных // Труды II Всероссийского семинара "Распределенные и кластерные вычисления" - Красноярск, ИВМ СО РАН, 2004

Приложение 1

Листингпрограммы

#include

#include node

{N; // Порядковый номер пикселяR; // Оценка рискаC; // Стоимость*r,*l;

};*left, *right;In ()

{N,C;R;*p, *q;*f;= fopen ("data. txt","r"); // Считываем данные из файла(f == NULL)

{("Error! File data. txt not found! \n"); // ошибка();false;

}= left;(! feof (f))

{(f,"%d%f%d",&N,&R,&C);= new node;>N = N;>R = R;>C = C;>l = NULL;>r = NULL;(q == NULL)

{= p;= p;= p;

}(q == left)

{>r = p;>l = left;= p;

}

{>r = p;>l = q;= p;

}

}= q;(f);true;

}Delete (int N)

{*n, *p;= left;(n! = NULL)

{(n->N == N)

{(n == left && n == right) // в списке один элемнт

{= NULL;= NULL;n;true;

}(n == left) // удаляем первый элемент

{= n->r;>l = NULL;n;true;

}(n == right) // удаляем правый элемент

{= n->l;>r = NULL;n;true;

}

// удаляем из середины= n->r;>l = n->l;>l->r = p;n;true;

}= n->r;

}false;

}*Delete (node *n)

{*p;(n == left && n == right) // в списке один элемнт

{= NULL;= NULL;= NULL;n;p;

}(n == left) // удаляем первый элемент

{= n->r;>l = NULL;= n->r;n;p;

}(n == right) // удаляем правый элемент

{= n->l;>r = NULL;= NULL;n;p;

}

// удаляем из середины= n->r;>l = n->l;>l->r = p;n;p;

}Out ()

{*n;=