THE MANAGER AS A TEACHER: SELECTED ASPECTS OF STIMULATION OF SCIENTIFIC THINKING

Курсовой проект - Иностранные языки

Другие курсовые по предмету Иностранные языки

F profundity/intensity. System reaction is conditioned by type and number of its SFU. Simple control block has three channels of control: one external (command) and two internal (DPC and NF). It reacts to external influence through DPC (the “Х” informant) and to its own result of action of the system (the “Y” informant) through NF, whereas it controls executive elements of the system through efferent channels. Analogues of systems with simple control block are all objects of inanimate/inorganic world: gas clouds, crystals, various solid bodies, planets, planetary and stellar systems, etc. Biological analogues of systems with simple control block are protophytes and metaphytes, bacteria and all vegetative/autonomic systems of an organism, including, for example, external gas exchange system, blood circulation system, external gaseous metabolism system, digestion or immune systems. Even single-celled animal organisms of amoebas and infusorian type, inferior animal classes (jellyfish etc.) are the systems with complex control blocks/units (see below). All vegetative and many motor reflexes of higher animals which actuate at all levels starting from intramural nerve ganglia through hypothalamus are structured as simple control blocks. If they are affected by guiding influence of cerebral cortex, higher type (complex) reflexes come into service (see below). Analogues of the “Х” informant receptors are all sensitive receptors (haemo-, baro-, thermo- and other receptors located in various bodies, except visual, acoustical and olfactory receptors which are part of the “C” informant, see below). Analogues of the “Y” informant receptors are all proprio-sensitive receptors which can also be haemo-, baro-, thermo- and other receptors located in different organs. Analogues of the control block stimulators are all motor and effector nerves stimulating cross-striped, unstriated muscular systems and secretory cells, as well as hormones, prostaglandins and other metabolites having any effect on the functions of any systems of organism. Analogues of the analyzer-informant in the mineral and vegetative media are only connections/bonds between the elements of a type of direct connection of “X” and “Y” informants with effectors (axon reflexes). In vegetative systems of animals connections are also of a type of direct connection of “X” and “Y” informants with effectors (humoral and metabolic regulation), as well as axon reflex (controls only nervules without involvement of nerve cell itself) and unconditioned reflexes (at the level of intra-organ intramural and other neuronic formations right up to hypothalamus). Thus, using DPC and NF and regulating the performance of its SFU the system produces the results of action qualitatively and quantitatively meeting the preset goal.

Principle of independence of the result of action. As it was already repeatedly underlined, the purpose/goal of any system is to get the appropriate/due (target-oriented) result of action arising from the performance of the system. Actually external influence, “having entered” the system, would be transformed to the result of action of the system. That is why systems are actually the converters of external influence into the result of action and of the cause into effect. External influence is in turn the result of action of other system which interacted with the former. Consequently, the result of action, once it has “left” one system and “entered” into another, would now exist independently of the system which produced it. For example, a civil engineering firm had a goal to build a house from certain quantity of building material (external influence). After a number of actions of this firm the house was built (the result of action). The firm could further proceed to the construction of other house, or cease to exist or change the line of business from construction to sewing shop. But the constructed house will already exist independently of the firm which constructed it. The purpose of the automobile engine (the car subsystem) is burning certain quantity of fuel (external influence for the engine) to receive certain quantity of mechanical energy (the result of action of the engine). The purpose of a running gear (other subsystem of the car) is transformation of mechanical energy of the engine (external influence for running gear) into certain number of revolutions of wheels (result of action of running gear). The purpose of wheels is transformation of certain number of revolutions (external influence for wheels) into the kilometers of travel (result of action of wheels). All in all, the result of action of the car will be kilometers of travel which will already exist independently of the car which has driven them through. Photon released from atom which can infinitely roam the space of the Universe throughout many billions years will be the result of action of the exited electron. Result of a slap of an oar by water is the depression/hollow on the water surface which could have also remained there forever if it were not for the fluidity of water and the influence on it of thousand other external influences. However, after thousand influences it will not any more remain in the form of depression/hollow, but in the form of other long chain of results of actions of other systems because nothing disappears in this world, but transforms into other forms. Conservation law is inviolable.

System cycles and transition processes. Systems just like SFU have cycles of their activity as well. Different systems can have different cycles of activity and they depend on the complexity and algorithm of the control block. The simplest cycle of work is characteristic of a system with simple control block. It is formed of the following micro cycles: perception, selection and measurement of external influence by the “X” receptor; selection from “database” of due value of the result of action; transition process (NF multi-micro-cycle);

a) perception and measurement of the result of action by the “Y” receptor - b) comparison of this result with the due value c) development of the decision and corresponding influence on SFU for the purpose of correction of the result of action d) influence on SFU, if the result of action is not equal to the appropriate/due one, or transition to the 1st micro cycle if it is equal to the proper one e) actuation of SFU f) return to “a)”.

After the onset of external influence the “X” receptor would snap into action (1st micro cycle). Thereafter the value of the result of action which has to correspond to the given external influence (2nd micro cycle) is selected from the “database”. It is then followed by transition process (transition period, 3rd multi-micro-cycle, NF cycle): actuation of the “Y” receptor, comparison of the result of action with the due value selected from the “database”, corrective influence on SFU (the number of actuated SFU mill be the one determined by control block in the micro cycle “c”) and again return to the actuation of the “Y” receptor. It would last in that way until the result of action is equal to the preset one. From this point the purpose/goal is reached and after that the control block comes back to the 1st micro cycle, to the reception of external influence. System performance for the achievement of the result of action would not stop until there new external influence emerges. The aforementioned should be supplemented by a very essential addition. It has already been mentioned when we were examining the SFU performance cycles that after any SFU is actuated it completely spends all its stored energy intended for the performance of action. Therefore, after completion of action SFU is unable of performing any new action until it restores its power capacity, and it takes additional time which can substantially increase the duration of the transition period. That is why a speed of movement (e.g., running) of a sportsmans body whose system of oxygen delivery to the tissues is large (high speed of energy delivery) would be fast as well. And the speed of movement of a cardiac patients body would be slow because the speed of energy delivery is reduced due to the affection of blood circulation system which is a part of the bodys system of power supply. Sick persons spent a long time to restore energy potential of muscular cells because of the delayed ATP production that requires a lot of oxygen. Micro cycles from 1st to 2nd constitute the starting period of control block performance. In case of short-term external influence control block would determine it during the start cycle and pass to the transition period during which it would seek to achieve the actual result of action equal to the proper one. If external influence appears again during the transition period the control block will not react to it because during this moment it would not measure “Х” (refractory phase). Upon termination of the transition period the control block would go back/resort/ to the starting stage, but while it does so (resorts), the achieved due value of the result of action would remain invariable (the steady-state period). If external influence would be long enough and not vary so that after the first achievement of the goal the control block has time to resort to reception “X” again, the steady value of the result of action would be retained as long as the external influence continues. At that, the transition cycle will not start, because the steady-state value of the result of action is equal to the proper/due one. If long external influence continues and changes its amplitude, the onset of new transition cycle may occur. At that, the more the change in the amplitude of external influence, the larger would be the amplitude of oscillation of functions. Therefore, sharp differences of amplitude of external in