Електричні кола при синусоїдній дії

Информация - Физика

Другие материалы по предмету Физика

гiчно колам постiйного струму. Комплексний метод оснований на замiнi синусоїдних функцiй часу векторами, що обертаються.

Вiдомо, що кожна точка на комплекснiй площинi визначається вектором, початок якого знаходиться в т.0, а кiнець - у точцi, що вiдповiдає даному комплексному числу. Комплексне число можна виразити в трьох формах: у показниковiй -

 

-

 

де - модуль комплексного числа; - аргумент (рис.4г);

у тригонометричнiй -

 

;

 

в алгебраїчнiй -

 

,

 

де - дiйсна частина;

- уявна частина комплексного числа.

Очевидно, що

 

; .

 

Вектор, який обертається у додатному напрямi (тобто проти годинникової стрiлки) з кутовою швидкiстю , можна подати як

 

, (2)

 

де - комплексна амплiтуда; - оператор повороту (обертання).

Отже, комплексна амплiтуда синусоїдного струму (напруги) - це комплексна величина, модуль та аргумент якої дорiвнюють вiдповiдно амплiтудi та початковiй фазi синусоїдного струму (напруги).

Комплексна амплiтуда не залежить вiд часу, тобто є нерухомим вектором. Множення комплексної амплiтуди на означає поворот вектора на комплекснiй площинi у позитивному напрямi.

Записуючи комплексно-часову функцiю (2) у тригонометричнiй формi

 

,

 

бачимо, що синусоїдна функцiя i (t) може розглядатися як уявна частина (2) або як проекцiя вектора на уявну вiсь:

 

.

 

Позначення Im означає, що застосовується уявна частина ("image").

Аналогiчно косинусоїдна функцiя може розглядатися як дiйсна частина або проекцiя на дiйсну вiсь:

 

.

 

Символ Re означає операцію взяття дiйсної частини ("real").

Подання синусоїдної функцiї за допомогою векторiв та їх проекцiй iлюструється на рис.5.

 

Рисунок 5

 

4. Синусоїдний струм в опорi

 

Розглянемо коло з резистором, який має активний опiр R. Нехай у колi протікає струм . Тодi за законом Ома напруга на затискачах резистора становить:

 

.

 

Як бачимо, ; , тобто напруга i струм у колi з активним опором збiгаються за фазою.

Крiм того, при проходженнi синусоїдного струму крiзь опiр не тiльки миттєвi значення, але й амплiтуди та дiючi значення повязанi за законом Ома:

 

; .

 

Подамо миттєвi значення напруги та струму через комплекснi амплiтуди:

 

;

.

 

Пiдставимо цi значення до виразу :

 

.

 

Якщо рiвнi мiж собою реальнi частини, то рiвнi й вектори: . Скоротивши на множник , матимемо

 

- (3)

 

закон Ома в комплекснiй формi.

Запишемо комплекснi дiючi значення струму та напруги:

 

; .

 

На рис.6 зображено вектори , , , на комплекснiй площинi.

 

Рисунок 6

 

Визначимо миттєву потужнiсть, яка витрачається в опорi. При цьому врахуємо, що .

 

.

Оскiльки , отримуємо

.

 

Залежнiсть миттєвих значень u, i, p від t (або ) показано на рис.7. Визначимо активну потужнiсть P, яка дорiвнює середньому за перiод значенню миттєвої потужностi:

 

.

 

Другий iнтеграл дорiвнює нулю, оскiльки на iнтервалi часу, що кратний перiоду, додатнi та вiдємнi площi синусоїдної функцiї однаковi.

 

Рисунок 7

5. Синусоїдний струм в iндуктивностi

 

Нехай через iндуктивнiсть протiкає струм . ЕРС самоiндукцiї визначається за формулою

 

.

 

Оскільки , матимемо

 

.

 

Цей вираз дозволяє зробити такi висновки:

1) ; , отже напруга випереджає струм в iндуктивностi на кут ;

2) амплiтуди, так само як i дiючi значення напруги та струму, повязанi законом Ома: ; .

Величина , яка має розмiрнiсть опору, зветься iндуктивним опором; обернена до неї величина зветься iндуктивною провiднiстю. Тодi; .

Миттєва потужнiсть, яка надходить до iндуктивностi, становить:

 

.

 

Очевидно, що активна потужнiсть P = 0 (як середнє значення синусоїдної функцiї на iнтервалi часу T). Визначимо енергiю магнiтного поля в iндуктивностi:

 

.

 

(Замiна змiнних у межах: при , ; при , ).

Отже

 

.

 

Залежностi миттєвих значень u, i, p, в iндуктивностi за часом зображено на рис.8. Проаналiзуємо цi часовi дiаграми: протягом першої чвертi перiоду (вiдлiк вiд точки t*), коли струм у колi збiльшується, має мiсце заряд iндуктивностi, тобто накопичення енергiї в магнiтному полi за рахунок джерела. Миттєва потужнiсть при цьому додатна i досягає максимального значення .

 

Рисунок 8

 

У момент часу () енергiя, накопичена в магнiтному полi, також досягає максимального значення . Пiсля цього впродовж другої чвертi перiоду вiдбувається зменшення струму та миттєвої енергiї, тобто розряд iндуктивностi; миттєва потужнiсть у цi моменти вiдємна. Оскiльки енергiя в системi не витрачається (P = 0), то зменшення означає, що енергiя повертається до джерела. Далi процес повторюється. Таким чином, вiдбувається коливання енергiї мiж джерелом та iндуктивнiстю, причому активна потужнiсть, яка надходить до iндуктивностi, дорівнює нулю.

Подамо миттєвi значення струму та напруги через комплекснi амплiтуди:

 

; .

.

 

З останнього виразу можна зробити такi висновки:

1) операцiя диференцiювання дiйсної функцiї часу за t еквiвалентна множенню на величину комплексно-часової функцiї;

2) оскiльки рiвнi мiж собою реальнi частини, рiвнi також i вектори: . Тодi маємо зако