Геофизический “диалект” языка математики

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

Геофизический “диалект” языка математики

В.Н. Страхов

Объединенный институт физики Земли им. О.Ю. Шмидта РАН, г. Москва

1. В 1995 г. в статье “ Геофизика и математика” , см. [1], автор впервые сформулировал следующее утверждение: математика является языком науки в целом, но каждая конкретная наука должна “ разговаривать” на собственном (специфическом) диалекте этого языка.

2. В XX веке внедрение математических методов в геофизику (“ освоение языка математики” ) шло в основном путем заимствования готовых результатов и методов, прежде всего из математической физики и теории некорректно поставленных задач, но также из теории вероятностей и математической статистики, вычислительной математики, теории дифференциальных и интегральных уравнений.

Однако, по мнению автора, эпоха разработки методов постановки и решения задач, возникающих к геофизике на этапе интерпретации данных наблюдений различных элементов физических полей, на основе заимствования результатов и методов, разработанных в различных разделах математики, закончилась. Необходимо осознать подлинную суть “ геофизического диалекта” языка математики и начать формирование принципиально новой математической геофизики.

3. Над указанными общими соображениями автор размышлял последние 5 лет; важный этап в формировании его понимания сути “ геофизического диалекта” языка математики состоял в осознании недостатков (по его терминологии “ дефектности” ) классических конструкций аддитивной параметровой регуляризации конечномерных линейных некорректных задач (статья “ Критический анализ классической теории линейных некорректных задач” , см. [2]).

4. Чтобы лучше (точнее и глубже) понять сущность “ геофизического диалекта” языка математики, целесообразно за основу взять основополагающие установки, с одной стороны математической физики и классической теории некорректно поставленных задач (отождествляя эти установки с установками математики в целом), а с другой стороны новой математической геофизики (находящейся, по мнению автора, еще в процессе становления).

При этом целесообразным представляется выделение следующих трех типов установок:

I) относящихся к выбору базовых математических теорий при изучении физических полей, к идейным постановкам задач и способам их исследования;

II) относящихся к учету априорной информации о свойствах искомого решения и помех во входных данных в случае некорректно поставленных задач (и прежде всего в случае конечномерных линейных некорректных задач);

III) относящихся к разработке численных алгоритмов и тех конкретных компьютерных технологий решения задач, которые являются основным рабочим инструментом и которые предоставляются в распоряжение исследователей.

Ниже дается более подробная характеристика указанных трех типов установок (в математической физике и классической теории некорректных задач с одной стороны, и в математической геофизике с другой).

5. Начнем с характеристики установок первого типа. Установки математической физики и теории некорректных задач перечисляются (здесь и всюду ниже) под буквой А, установки же математической геофизики под буквой Б.

А. Используются исключительно теории континуальных физических полей, описываемые дифференциальными уравнениями или системами подобных уравнений, в частных производных (в основном линейными) для основных элементов полей (скалярных или векторных потенциалов). Основные задачи, изучаемые в рамках континуальных теорий прямые и обратные, а также краевые (если поля зависят от времени). Основные аналитические объекты, рассматриваемые в рамках континуальных теорий физических полей бесконечномерные (функции, являющиеся элементами банаховых пространств; операторы, действующие из одних функциональных пространств в другие; бесконечномерные функционалы, определенные на элементах банаховых пространств, и т.д.). Основные решаемые задачи типа операторных уравнений в банаховых ( или более узко гильбертовых) пространствах, задачи нахождения значений операторов (чаще всего линейных, но неограниченных) на элементах функциональных (банаховых, гильбертовых) пространств, задачи минимизации (условные и безусловные) бесконечномерных функционалов. Используется классификация решаемых (бесконечномерных) задач на корректно и некорректно поставленные. Основные позиции, используемые при анализе задач: 1) проблема существования решений задач при определенных (бесконечномерных) данных; 2) проблема единственности решений задач; 3) проблема устойчивости решений задач. Основные результаты исследований задач: а) теоремы существования, единственности и устойчивости для корректно поставленных задач; б) теоремы условного существования, условной единственности и условной устойчивости для некорректно поставленных задач; в) теоремы регуляризации (сходимости) для методов решения некорректных задач.

Процедуры дискретизации пространственных переменных, соответственно дискретизации дифференциальных уравнений используются только в локальном варианте при разработке численных методов решения краевых (начально-краевых) задач. Общая методология аппроксимационного подхода при решении основных (бесконечномерных) задач не формулируется. Создание компьютерных технологий решения задач не считается главным.

Б. Наряду с теориями континуальных физических полей используются также теории дискретных физических полей (которые возникают при дискретизации все?/p>