Геофизический “диалект” языка математики

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

?. В математической физике и классической теории некорректных задач данная проблема по существу не рассматривается.

б) В целом ряде геофизических методов (гравиметрия, магнитометрия, геоэлектрика) важнейшее значение имеет проблема построения метрологических линейных аппроксимаций функций, описывающих элементы изучаемых физических полей на поверхности Земли и в ее внешности. Такие аналитические аппроксимации должны строиться непосредственно по данным измерений различных характеристик внешних полей в конечном числе точек, произвольно расположенных на поверхности Земли и в ее внешности. Решение данной проблемы позволит принципиально изменить информационную основу геофизики аналитические аппроксимации должны заменить карты. В рамках математической физики и классической теории некорректных задач проблема построения аналитических аппроксимаций элементов физических полей по существу не рассматривается.

в) Создаваемые в рамках математической геофизики алгоритмы решения задач (соответственно реализующие их компьютерные технологии) организуются так, чтобы получались некоторые внутренние оценки надежности и точности получаемых решений. Такие оценки оказываются возможными потому, что и данные наблюдений, и имеющаяся априорная информация подразделяются на две части: во-первых, непосредственно используемая в вычислительном процессе, т.е. в процессе нахождения искомого решения задачи, а во-вторых, не используемая в вычислительном процессе, но используемая в специальных процедурах оценки точности и надежности полученных решений (иначе контрольные данные). При получении неудовлетворительных оценок процедура нахождения решения задачи должна повторяться при иной организации используемых данных и априорной информации. Такая переорганизация процедуры нахождения решения может производиться несколько раз. Ясно, что в рамках математической физики и теории некорректных задач подобного рода аспекты нахождения решений задач не рассматриваются вовсе.

г) В рамках математической физики рассматривается целое множество моделей помех во входных данных, которые фактически не рассматриваются в классической теории некорректных задач. Во-первых, это модели мультипликативно-аддитивных помех, при этом каждая из составляющих этой модели характеризуется целым набором числовых величин. Во-вторых, это модели помех разнородных и разноточных, т.е. с “ блочной характеристикой” . Иначе говоря, вектор помехи наделяется блочной структурой, и каждый блок (парциальный вектор помехи) наделяется собственными (различными) характеристиками помехи. Используется еще и ряд других моделей помех во входных данных решаемых задач.

д) В математической геофизике используется принципиально новый метод нахождения аналитических аппроксимаций элементов физических полей метод интегральных представлений, который призван заменить классический метод интегральных уравнений. При этом важнейшим частным случаем этого метода является метод линейных интегральных представлений. Данные методы, см. [3,4], созданы именно в математической геофизике, они не разрабатывались в математической физике и классической теории некорректных задач.

е) В рамках математической геофизики важнейшей вычислительной проблемой признается проблема нахождения устойчивых приближенных решений систем линейных алгебраических уравнений с приближенными данными, большой (P=NM=108109) и сверхбольшой (P=NM ? 1010) размерности (здесь N число уравнений в системе, М число подлежащих определению неизвестных компонент вектора x). В силу этого в ней предложен целый ряд принципиально новых конструктивных идей, используемых при разработке алгоритмов нахождения искомых решений линейных систем, см. [5-21]. Здесь прежде всего следует отметить идею редукции систем к канонической форме (в которой вектор правой части системы имеет всего одну ненулевую компоненту), идею редукции систем в канонической форме к решению одного уравнения с одной неизвестной, идею адаптивной регуляризации (основанной на использовании специальных так называемых корреляционных ортогональных преобразований матриц систем (Прим. автора: здесь особо следует подчеркнуть тот факт, что в рамках той новой теории регуляризации систем линейных алгебраических уравнений, которая разрабатывается автором в последние годы, см. [ ], использование новых ортогональных преобразований (не рассматривавшихся ранее в вычислительной линейной алгебре) имеет в некотором смысле определяющее значение.)) и целый ряд других конструктивных идей, на которых здесь нет возможности останавливаться. Созданные в рамках математической геофизики новые алгоритмы нахождения приближенных решений систем линейных алгебраических уравнений являются новыми и для вычислительной линейной алгебры.

ж) В рамках новой математической геофизики разрабатывается принципиально новый подход к решению обратных геофизических задач, прежде всего в гравиметрии и магнитометрии, в котором отпадает необходимость в решении сложных (по аналитике) прямых задач. (Напомним здесь, что основной метод решения обратных задач геофизики основывается на многократном варьировании моделей изучаемой геологической среды, решении соответствующих задач для каждой из моделей и сопоставлении вычисленных для каждой модели величин с данными наблюдений.) В рамках нового подхода, используемого в рамках теорий дискретных физических полей, используются два приема:

во-первых, прием построения эквивал?/p>