Геофизический “диалект” языка математики

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

?о трехмерного евклидова пространства, а также при конечномерной аппроксимации дифференциальных уравнений); при этом вместо краевых условий используются конструкции регуляризации. Результаты, полученные в рамках математической физики для конечномерных аналитических объектов и задач (теоремы единственности, теоремы сходимости и т.д.) используются в ограниченном объеме. Основное значение придается разработке единого аппроксимационного подхода к построению решений бесконечномерных задач, т.е. переходу от бесконечномерных объектов и задач к конечномерным, которым придается определяющее значение. Решаемые конечномерные задачи также подразделяются на корректно и некорректно поставленные, основное значение придается проблеме нахождения приближенных решений линейных некорректно поставленных задач, т.е. нахождения приближенных решений систем линейных алгебраических уравнений с приближенными данными. При этом главной целью всех теоретических построений является создание эффективных компьютерных технологий.

6. Переходим к характеристике установок второго типа.

А. В математической физике и классической теории некорректных задач, хотя и принимается, что решения некорректных задач могут быть получены лишь при использовании так называемой априорной (дополнительной) информации о свойствах искомого решения и помех во входных данных, однако фактически принимается стратегия использования минимальных объемов априорной информации. Именно, используется только та априорная информация, которая обеспечивает факт регулярности предлагаемых (разрабатываемых) методов, т.е. сходимости решений к точным при снижении интенсивности помех (в принятых метриках) до нуля. При этом основные разрабатываемые методы относятся к бесконечномерным задачам, на конечномерные они распространяются без всяких изменений.

Проблема повышения точности и надежности получаемых решений за счет использования максимально возможных объемов априорной информации по существу не рассматривается.

Б. В математической геофизике основное значение придается проблеме получения максимально надежных и точных решений конечномерных задач, и прежде всего задач нахождения устойчивых приближенных решений систем линейных алгебраических уравнений с приближенными данными. В связи с этим в рассмотрение вводится множество различных (по типам помех во входных данных, по имеющимся объемам априорной информации о помехах) постановок некорректных задач. В качестве самостоятельной (имеющей принципиальное значение) рассматривается задача нахождения различных характеристик помех непосредственно по тем заданным (из наблюдений) величинам, по которым ищутся решения задач.

7. Далее переходим к характеристикам установок третьего типа.

А. В рамках математической физики и классической теории некорректных задач проблема создания численных алгоритмов и эффективных компьютерных технологий не рассматривается как имеющая принципиальное значение. Это, так сказать, чисто техническая проблема, которая в каждом конкретном случае должна решаться по-своему. Никакая общая методология, на основе которой должна разрабатываться проблема создания численных алгоритмов и эффективных компьютерных технологий, не создается.

Б. В рамках же математической геофизики рассматриваемой проблеме придается первостепенное значение. Утверждается, что в разрабатываемых численных алгоритмах и компьютерных технологиях прежде всего должны реализовываться установки общей методологии интерпретации геофизических данных, и прежде всего концепция методообразующих идей [3]. Последние имеют иерархическое строение, на верхнем уровне фундаментальных идей последних всего пять:

1) идея использования аналитических аппроксимаций (изучаемых функций, уравнений и задач);

2) идея критериальности (использования специальных критериев, которым должны удовлетворять искомые решения);

3) идея алгебраизации (желательно решения задач искать как решение одной, либо некоторой совокупности, систем линейных алгебраических уравнений);

4) идея согласования множества допустимых решений (в силу наличия неопределенности в используемой априорной информации число допустимых не противоречащих априорной информации решений может быть целое множество; но пользователю желательно иметь в конечном итоге всего одно решение, отсюда необходимость в конструировании окончательного решения по множеству допустимых);

5) идея использования методов распознавания образов в рамках как разрабатываемых численных алгоритмов, так и создаваемых компьютерных технологий.

В математической геофизике принципиально важным принимается использование методов распознавания образов как при формировании тех объемов априорной информации, которая далее используется в алгоритмах нахождения искомых решений некорректных задач, так и при анализе хода вычислительного процесса, при управлении этим ходом.

8. Необходимо подчеркнуть еще ряд важных позиций, по которым имеется принципиальное различие между установками математической физики и теории некорректно поставленных задач с одной стороны, и новой математической физики с другой. Этих позиций восемь.

а) В математической геофизике фундаментальное значение имеет проблема комплексного использования данных нескольких геофизических методов в целях построения наиболее надежных и точных моделей строения земных недр, а также протекающих в них геодинамических процессо?/p>