Временные ряды и их предварительный анализ

Контрольная работа - Экономика

Другие контрольные работы по предмету Экономика

средними.

В основе расчета этих показателей динамики лежит сравнение уровней

временного ряда.

Если сравнение осуществляется с одним и тем же уровнем, принятым за базу сравнения, то эти показатели называются базисными.

Если сравнение осуществляется при переменной базе, и каждый последующий уровень сравнивается с предыдущим, то вычисленные таким образом показатели называются цепными.

Абсолютный прирост равен разности двух сравниваемых уровней.

Темп роста есть отношение двух сравниваемых уровней ряда, выраженное в процентах. Темп прироста характеризует абсолютный прирост в относительных величинах. Определенный в процентах, темп прироста показывает, на сколько процентов изменился сравниваемый уровень по отношению к уровню, принятому за базу сравнения. В таблице 2.4 приведены формулы для вычисления базисных, цепных и средних показателей динамики. Средние показатели: средний абсолютный прирост, средний темп роста и прироста определяются для получения обобщающих показателей динамики развития.

В таблице использованы следующие обозначения:1,y2, ... ,yt, ..., yn - уровни временного ряда в моменты времени t = 1, 2, ... , n;- длина временного ряда; yб - уровень временного ряда, принятый за базу.

Таблица 2.4 Основные показатели динамики временных рядов

ПоказательАбсолютный прирост, ?уТемп роста, Т, %Темп прироста К, %ЦепнойБазисныйСредний

Прогнозирование на основе средних показателей динамики

Описание динамики ряда с помощью среднего абсолютного прироста соответствует его представлению в виде прямой, проведенной через две крайние точки. В этом случае, чтобы получить прогноз на один шаг вперед, достаточно к последнему наблюдению прибавить значение среднего абсолютного прироста:

 

(2.7)

 

где yn - фактическое значение в последней n- ой точке ряда;

- прогнозная оценка значения уровня в точке n+1;

- значение среднего прироста, рассчитанное для временного ряда .

Чтобы получить прогноз на К шагов вперед, нужно к последнему наблюдению прибавить значение среднего абсолютного прироста, умноженное на К:

(2.8)

Такой подход к получению прогнозного значения корректен, если характер развития близок к линейному. На такой равномерный характер развития могут указывать примерно одинаковые значения цепных абсолютных приростов.

Применение среднего темпа роста (и среднего темпа прироста) для описания динамики ряда соответствует его представлению в виде показательной или экспоненциальной кривой, проведенной через две крайние точки. Использование этого показателя для прогноза целесообразно для процессов, изменение динамики которых происходит примерно с постоянным темпом роста. В этом случае прогнозное значение на К шагов вперед может быть получено по формуле:

 

(2.9)

 

где - прогнозная оценка значения уровня ряда в точке n+к;n- фактическое значение в последней n-ой точке ряда;

- средний темп роста, рассчитанный для ряда (в относительных единицах).

К недостаткам среднего прироста и среднего темпа роста следует отнести то, что они учитывают лишь конечный и начальный уровни ряда, исключают влияние промежуточных уровней. Тем не менее, эти показатели имеют широкую область применения, что объясняется простотой их вычисления. Они могут быть использованы как приближенные, простейшие способы прогнозирования, предшествующие более глубокому количественному и качественному анализу.

Прогнозирование по методу экспоненциальных средних

В настоящее время одним из наиболее перспективных направлений исследования и прогнозирования одномерных временных рядов являются адаптивные методы.

При обработке временных рядов, как правило, наиболее ценной является информация последнего периода, т.к. необходимо знать, как будет развиваться тенденция, существующая в данный момент, а не тенденция, сложившаяся в среднем на всем рассматриваемом периоде. Адаптивные методы позволяют учесть различную информационную ценность уровней временного ряда, степень "устаревания" данных.

Прогнозирование методом экстраполяции на основе кривых роста в какой-то мере тоже содержит элемент адаптации, поскольку с получением "свежих" фактических данных параметры кривых пересчитываются заново.

Поступление новых данных может привести и к замене выбранной ранее кривой на другую модель. Однако степень адаптации в данном случае весьма незначительна, кроме того, она падает с ростом длины временного ряда, т.к. при этом уменьшается "весомость" каждой новой точки. В адаптивных методах различную ценность уровней в зависимости от их "возраста" можно учесть с помощью системы весов, придаваемых этим уровням.

Оценивание коэффициентов адаптивной модели обычно осуществляется на основе рекуррентного метода, который формально отличается от метода наименьших квадратов, метода максимального правдоподобия и других методов тем, что не требует повторения всего объема вычислений при появлении новых данных.

Примером простейшей адаптивной модели является экспоненциальная средняя. Экспоненциальное сглаживание временного ряда производится итеративно (пошагово), причем массив прошлой информации представлен единственным значением сглаженного уровня ряда в предыдущий момент времени.

Для экспоненциального сглаживания ряда используется рекуррентная формула

 

(2.10)

 

где St- значение экспоненциальной средней в момент t;

? - параметр сглаживания, ? =сonst, 0< ? <1;

? =