Влияние гуминовых кислот как стимуляторов роста растений на характер белкового и углеводного обмена растений пшеницы in vitro

Дипломная работа - Биология

Другие дипломы по предмету Биология




?ных различий по частоте каллусогенеза между различными сортами не было выявлено [27].

1.3 Гормональная регуляция в культуре ткани

Общие сведения о влиянии гормонов

Исследования гормональной регуляции жизни растений является одной из центральных задач мировой физиологии, биохимии и молекулярной биологии растений. Это объясняется тем, что вся жизнь растительных организмов, начиная от оплодотворенной яйцеклетки и кончая отмиранием и смертью, происходит под контролем фитогормонов. Кроме того, фитогормоны играют важную роль в реакции растений на внешние воздействия и в формировании устойчивости растений к экстремальным условиям [1].

Химическая основа действия фитогормонов в растительных клетках еще недостаточно изучена. В настоящее время полагают, что одна из точек приложения их действия близка к гену и гормоны стимулируют здесь образование специфичной информационной РНК. Эта РНК, в свою очередь, участвует в качестве посредника в синтезе специфичных ферментов - соединений белковой природы, контролирующих биохимические и физиологические процессы [26, 31].

В настоящее время активно исследуются следующие группы фитогормонов: ауксины, цитокинины, гиббереллины, абiизовая кислота и этилен. Кроме того, в последнее время в растениях открыты также стероидные гормоны, салициловая и жасминовые кислоты, отвечающие всем критериям фитогормонов [24, 29].

Все фитогормоны объединяют некоторые общие свойства: они синтезируются в самом растении и являются высокоэффективными регуляторами физиологических программ. Их действие проявляется в крайне низких концентрациях (10-5 - 10-12 М) ввиду исключительно высокой чувствительности к ним растительных клеток. С помощью фитогормонов одни типы клеток и тканей растений регулируют физиологические процессы в других типах клеток и тканей [14].

К числу физиологических программ, регулируемых фитогормонами, относится развитие и созревание семян, их прорастание, рост и морфогенез растений, переход растений к цветению, плодоношение, старение растений, опадение листьев, покой клубней, почек, семян и многое другое [6].

В последние годы наука достигла больших успехов в понимании того, как гормоны регулируют жизнь растений, вызывая переключение генетических программ, определяющих последовательность этапов развития, а также ответ растений на внешние воздействия [11]. Постулировано общее свойство классических фитогормонов: синтезируясь в одних частях растения и транспортируясь в другие его части, они оказывают влияние на многие процессы, в том числе морфогенетического характера. Установлено, что между фитогормонами существуют многообразные связи [18, 32]. Действие всех фитогормонов на растение весьма поливалентно: все они действуют на рост и деление клеток, на процессы старения и адаптации, на транспорт веществ, дыхание, синтез нуклеиновых кислот и белков и на многие другие процессы. Показано, что существенными факторами для эффективного действия гормонов являются, с одной стороны, концентрация гормона, достигшего специфических клеток - "мишеней", с другой - компетентность растительных тканей [28, 29]. Все, что известно сегодня о механизме действия фитогормонов, крайне важно для того, чтобы понять, как происходит рост и развитие растений, то есть как реализуется их онтогенетическая программа, а также как растение реагирует на стрессы в течение своей жизни. Эти знания крайне важны для решения практических задач сельского хозяйства и биотехнологии, то есть для получения полезных продуктов растительного происхождения в поле, в лаборатории и в заводских условиях [4, 13].

Гуминовые кислоты

Гуминовые кислоты - органические вещества, извлекаемые из природных продуктов (торф, бурый уголь, каменный уголь) водными растворами щелочей. Сложная смесь соединений разного состава, свойств и строения, переходящая в воду из природных продуктов, таких как торф, бурый уголь, каменный уголь. Гуминовые кислоты влияют на органолептические свойства воды (запах, цвет), ускоряют коррозию металла, оказывают отрицательное влияние на развитие водных микроорганизмов, влияют на химический состав воды (снижают содержание кислорода, влияют на ионные и фазовые равновесия). При нейтрализации образующихся при этом растворов солей (гуматов) гуминовые кислоты выпадают в виде темноокрашенного объемистого осадка. Из осадка могут быть выделены фульвокислоты, которые переходят в водный раствор после его подкисления (15% в торфах и до 45% в окисленных углях).

По химической структуре гуминовые кислоты - высокомолекулярные конденсированные ароматические соединения (молекулярная масса = 1300-1500), в которых установлено наличие фенольных гидроксилов, карбоксильных, карбонильных и ацетогрупп, простых эфирных связей и др. Элементный состав: углерод - 50-70%, водород - 4-6%, кислород - 25-35%, азот - 3-5%. Обязательно входят сера - 0,7 - 1,2% и фосфор - 0,5%. Всегда есть разные металлы, хотя трудно сказать, обязательны ли они для гуминовых веществ или просто являются примесью, поскольку очистить гуминовые вещества нелегко.

Гуминовые субстанции, как органические компоненты индивидуальной природы, ускоряют превращение различных микроэлементов в формы непосредственно доступные растениям.

На сегодняшний день доступно множество исследований, в которых показана возможность реакций ауксинового типа в присутствии гуминовых субстанций. Кроме того, в нескольких работах четко установлено, что гуминовые субстанции увеличивают степень п