Влияние гуминовых кислот как стимуляторов роста растений на характер белкового и углеводного обмена растений пшеницы in vitro

Дипломная работа - Биология

Другие дипломы по предмету Биология




?итии зиготы [39].

Формирование растений in vitro путем органогенеза состоит в появлении и росте побегов, корней или других органов из культивируемых клеток растений. Для регенерации целого растения таким способом обычно вызывают формирование побегов in vitro. Полученные побеги переносят на среду для укоренения. В результате образуется растение - регенерант. Опыт экспериментальной и практической работы показывает, что генетически наиболее стабильны организованные меристемы. Поэтому, регенерация растений через развитие побегов из пазушных почек является основой для промышленного клонального размножения многих растений [3]. Для получения культивируемых in vitro тканей и регенерантных растений различными исследователями были разработаны и предложены 10 разнообразных питательных сред - Уайта [53], Готре [36], Нича [47], Мурасиге и Скуга [45], Хеллера [38], Гамборга [35] и др.

.2 Культура ткани в размножении пшеницы

Открытие андрогенеза in vitro у растений [37, 40] - образования растения-регенеранта из микроспоры, можно охарактеризовать как одно из самых значительных в биологии растений за последние 35 лет. Данный феномен лег в основу метода культуры изолированных пыльников и микроспор [43]. К настоящему времени накоплен значительный эмпирический материал по изучению различных аспектов андрогенеза in vitro. Разрабатываются и эмбриологические основы этого интереснейшего феномена. Привлечение эмбриологической информации в данном случае совершенно необходимо. В сфере внимания именно эмбриологии находятся проблемы индивидуального развития растительного организма, познания сущности и причин происходящих при этом формообразовательных процессов как in vivo, так и in vitro [15, 20, 41].

Различают два пути морфогенеза в культуре пыльников злаков [21]: эмбриоидогенез (растение - регенерант возникает из микроспоры через формирование эмбриоида - зародышеподобной структуры) и каллусогенез (микроспора сначала формирует недифференцированный каллус, который дает начало растению - регенеранту после переноса на среду, индуцирующую органогенез).

Начальное звено любого морфогенеза - инициальная клетка. В случае андрогенеза in vitro речь должна идти о микроспоре - клетке, в условиях культуры дающей начало морфогенным структурам (эмбриоидам и каллусам) [42].

С эмбриологических позиций проблема образования морфогенных структур в культивируемых пыльниках связана с решением проблемы "переключения" развития микроспоры с обычного для нее гаметофитного пути на принципиально иной - спорофитный путь развития [44].

Уже на ранних этапах работы по изучению андрогенеза in vitro возникло представление о существовании в пыльниках особой фракции морфогенетически компетентных микроспор, способных развиваться по спорофитному пути [50]. Вопрос о том, приобретается ли компетентность к спорофитному развитию только в условиях in vitro или морфологическим эквивалентом компетентных микроспор являются различного рода аномальные микроспоры, уже присутствующие в пыльниках in vivo, до культивирования, пока не решен однозначно, хотя имеется немало данных в пользу именно последнего предположения [19].

К настоящему моменту исследователи не пришли к единому мнению о фазе развития микроспор, адекватной для начала культивирования пыльников. Согласно данным большинства исследователей, оптимальной для индукции андрогенеза in vitro у злаков (в частности, пшеницы) является сильновакуолизированная фаза развития микроспор. Однако ряд исследователей сообщают об иных фазах микроспорогенеза, оказавшихся благоприятными для индукции андрогенеза in vitro у тех или иных видов злаков. Таким образом, данный вопрос остается дискуссионным [20].

Многолетние разносторонние исследования морфогенеза интактных растений позволили установить, что процесс образования новой формы есть результат координированного действия активной пролиферации, роста и дифференциации клеток в очагах органогенеза, и на ультраструктурном уровне частот определяется динамическими перестройками тубулинового и актинового цитоскелетов. Формообразование, как органов побега, так и корневой системы у растения начинается с активации делений клеток в определенной плоскости. То есть на молекулярном уровне морфогенез, по-видимому, сопряжен с активностью пролиферации [52]. Несмотря на общий генотип донорного растения и взятого от него экспланта, закономерности морфогенеза, характерные для интактного растения, могут нарушаться в специфичных условиях культивирования in vitro. Соотношение активности пролиферации неорганизованной массы каллусных клеток и частоты морфогенеза практически не изучалось. В частности, для каллусных культур пшеницы такие данные редки и противоречивы. В одних работах указывается, что эмбриогенный каллус работает быстрее, чем неэмбриогенный, в других - что активность пролиферации и частота морфогенеза коррелируют не всегда. То есть вопрос о необходимости сопряжения генетических механизмов пролиферации и морфогенеза в культурах in vitro, например, у злаков, остается открытым [33].

Исследования частот каллусогенеза в течение ряда лет показало, что данный этап в каллусных культурах пшеницы протекает однотипно у всех изученных сортов. Экспланты полностью завершали каллусогенез к 14 - му дню культивирования. Экспланты, не образовавшие каллус к этому дню были нежизнеспособными. Частоты каллусогенеза были стабильно высокими на протяжении трех лет исследований. Достове?/p>