Векторные поля
Дипломная работа - Математика и статистика
Другие дипломы по предмету Математика и статистика
Курсовая работа
Тема: Векторные поля
СОДЕРЖАНИЕ
Введение
. Векторные линии
. Векторные поля на плоскости. Векторные линии
. Вращение векторного поля
. Дивергенция векторного поля
. Циркуляция
. Ротор и его основные свойства
. Формулы Грина
. Формулы Стокса
Заключение
Литература
Введение
Векторный анализ - это раздел векторного исчисления, в котором изучается средствами математического анализа векторные и скалярные функции одного или нескольких аргументов (векторные поля и скалярные поля). Для характеристики данных полей вводится целый ряд понятий, часть которых приведены в данной работе: векторные линии, циркуляция, дивергенция.
Поле - область пространства, каждой точке которого соответствует определенное значение некоторой физической величины. По своему характеру физические величины могут быть скалярными или векторными. Соответственно поля этих величин также являются скалярными или векторными. Так же в данной работе будут приведены формулы британского математика и физика Джорджа Грина и английского физика-теоретика и математика ирландского происхождения Джорджа Габрие?ля Стокса. Объектом исследования в курсовой работе являются процессы поведения характеристик векторного поля
Цель написания работы состоит в изучении теории поля с помощью векторного анализа, и закрепить полученные знания по высшей математике.
1. Векторные линии
Векторной линией поля А называется линия (L), в каждой точке которой вектор А, отвечающий этой точке, касается (L); другими словами, это - линия, идущая в каждой своей точке вдоль поля.
В зависимости от физического смысла поля векторная линия может называться линией тока для поля скоростей, силовой линией для силового поля и т. д. (Подумайте, почему линии тока совпадают с траекториями частиц жидкости только для стационарных потоков.)
Задача о построении векторных линий заданного векторного поля геометрически равносильна задаче о построении интегральных линий для заданного поля направлений (п. XV. 12) Поэтому эта задача сводится к интегрированию системы дифференциальных уравнений; для этого надо ввести в пространство какую-либо систему координат.
Если, например, ввести декартовы координаты х, у, z, то вектор А можно разложить:
А = А (х, у, г) = Ах(х, у, z)i-+-Ay(x, у, г)} + Аг(х, у, г) к. (55)
На основании п. XV. 12 систему дифференциальных уравнений векторных линий поля А можно записать в симметричной форме (ср. ураннения (XV.66)). Для плоских полей (п. IX.9) эта система превращается в уравнение
_ dy Ах(х, у)~ A v{x, у)'
В исчислении вектор, векторное поле назначение вектор в каждой точке подмножество евклидова пространства . Векторного поля в плоскости, например, можно изобразить в виде стрелки, с заданной величиной и направлением, прилагаемый к каждой точке на плоскости. Векторные поля часто используются для моделирования, например, скорость и направление перемещения жидкости во всем пространстве, или сила и направление некоторых сил, таких как магнитные и гравитационные силы, как она меняется от точки к точке.
Элементы дифференциального и интегрального исчисления распространяются на векторные поля естественным образом. Если векторное поле представляет силу, линейный интеграл от векторного поля представляет работу силы движется по пути, и под эту интерпретацию сохранения энергии проявляется как частный случай основной теоремы исчисления . Векторные поля может полезно рассматривать как представляющий скорость движущегося потока в пространстве, и эта физическая интуиция приводит к понятия, такие как дивергенция (который представляет собой скорость изменения объема потока) и завиток (который представляет вращение потока).
В координатах векторное поле на область в п-мерном евклидовом пространстве можно представить в виде вектор-функция , которая связывает п-ки действительных чисел в каждой точке области. Такое представление векторного поля зависит от системы координат, и нет четко определенных законом преобразования при переходе от одной системы координат к другой. Векторные поля часто обсуждаются на открытых подмножеств евклидова пространства, но и смысл от других подмножеств, таких как поверхности, где они ассоциируют стрелка касательной к поверхности в каждой точке (касательный вектор).
В целом, векторных полей, определенных на дифференцируемых многообразиях, которые являются пространствами, которые выглядят как евклидова пространства на малых масштабах, но может иметь более сложную структуру, на больших масштабах. В этих условиях векторное поле дает касательный вектор в каждой точке многообразия (то есть раздел о касательное расслоение к многообразию). Векторного поля один вид тензорного поля.
2. Векторные поля на плоскости. Векторные линии
Пусть задано плоское векторное поле A, то есть в каждой точке M плоскости (или некоторой ее части) определен вектор А(М ), также лежащий в этой плоскости. Такое поле проще всего представлять себе как поле скоростей частиц газа или жидкости при стационарном течении в узком слое, но оно может иметь и другой физический смысл (гравитационное поле, электрическое поле и т.д.).
Будем считать, что вектор А(М) непрерывно зависит от точки M, за исключением, быть может, отдельных точек,