Фискальная политика
Курсовой проект - Экономика
Другие курсовые по предмету Экономика
са. Так, в одни годы увеличение налогового бремени сопровождалось сокращением ВВП, а в другие увеличением. Фактически это означает, что некая гипотетическая функциональная связь между ВВП и налоговым бременем постоянно “ломалась” и для каждого короткого периода времени действовала своя производственная функция; попытка отыскать универсальную зависимость для всего периода исследования скорее всего обречена на неудачу. Именно этот факт и предопределяет необходимость использования двух- и трехпараметрического аналитических методов оценки точек Лаффера как наиболее простых и максимально адекватных нынешним экономическим условиям.
Использование параметрических методов базируется на предпосылке о существовании функциональной связи между объемом производства и уровнем налогового бремени. При этом вид этой связи является общим для всех анализируемых годов, меняются в ней лишь параметры. Последние оцениваются “скользящим” способом, т. е. для каждой пары лет отдельно. При этом первый, базовый год фигурирует в качестве основного, а второй вспомогательного при определении параметров производственной функции первого года. Нам представляется, что такой подход наиболее перспективен и останется таковым в течение, по крайней мере, 5-6 лет, пока не будут накоплены данные о стабилизировавшемся процессе экономического роста.
При сопоставлении двух предложенных алгебраических методов можно сказать следующее. Достоинство трехпараметрического метода, прежде всего, учет функциональных свойств как производственной (4), так и фискальной (5) функций. Следовательно, оцениваемые параметры одновременно “стягиваются” свойствами производственной и фискальной систем, которые на практике могут сильно различаться; в двухпараметрическом методе мы ограничиваемся свойствами только производственной кривой (14), что означает безусловное упрощение моделируемого процесса и ведет к огрублению получаемых оценок. Кроме того, сам вид исходной квадратичной производственной функции (4) является более общим по сравнению с формулой (14) и тем самым генерирует более богатую аналитическую схему. В этом смысле трехпараметрический метод более предпочтителен. Вместе с тем вычислительная простота, наглядность и элегантность конечных результатов двухпараметрической схемы расчета предопределяют выбор ее в качестве рабочей методики. Нам представляется, что для уяснения макроэкономической ситуации следует пользоваться предельно простыми алгоритмами, не ведущими к двусмысленным интерпретациям.
Анализ свойств производственной и фискальной систем. Развивая последний тезис, покажем, что двухпараметрическая схема отыскания точек Лаффера наиболее приемлема с теоретической точки зрения. Для доказательства этого достаточно проанализировать свойства производственной и фискальной кривых.
Если точки Лаффера первого и второго рода для зависимостей (14) и (15) существуют, то производственная кривая и ее аналог в виде фискальной кривой будут иметь вид, как на рисунке. При этом несложно видеть, что объем производства и налоговые поступления синхронно обнуляются в двух точках: ??=0 и ??=-??/??. Таким образом, активные области определения производственной и фискальной функций совпадают. При этом очевидно, что если -??/??=1, то предельное налоговое бремя, при котором производственная и фискальная системы полностью “схлопываются”, равно 100%. При 01, обе системы продолжают функционировать даже при полном изъятии у хозяйственных субъектов получаемых ими доходов. Величины объема выпуска и собираемых налогов при 100-процентном фискальном бремени во всех случаях совпадают, что соответствует исходным теоретическим постулатам, и равны.
Однако самым важным и интересным представляется вывод о несовпадении точек Лаффера первого и второго рода, причем точка Лаффера второго рода смещена вправо по налоговой оси относительно точки первого рода: ??**>??* (это непосредственно вытекает из формул (19)-(20) и хорошо видно на рисунке при геометрическом наложении производственной и фискальной кривых). Таким образом, производственная и фискальная кривые характеризуются различной степенью кривизны. Можно сказать, что фискальная кривая получается в результате деформации производственной кривой в сторону ее правого края. Максимальное значение объема производства X*, приходящееся на точку Лаффера первого рода, составляет; максимальное значение массы взимаемых налогов T*, приходящееся на точку Лаффера второго рода, составляет.
Рис. Схематический вид производственной и фискальной кривой
Отмеченная особенность во взаимном расположении точек Лаффера первого и второго рода представляется весьма важной. Это связано с тем, что современная теория налогов оперирует в основном точками Лаффера второго рода, оставляя без должного внимания точки Лаффера первого рода. Вместе с тем, по нашему мнению, конструктивный анализ фискальной системы предполагает рассмотрение трех параметров: ??, ??* и ??**. Дело в том, что в некоторых случаях может возникнуть ситуация, когда ??*<??<??**. Это означает, что фактическое налоговое бремя меньше точки Лаффера второго рода и, следовательно, с точки зрения фискальных интересов государства, имеет вполне нормальную величину. Однако при этом оно больше точки Лаффера первого рода, а это означает, что установленный налоговый гнет стимулирует спад производства и ?/p>