Физико-химические свойства никелевых покрытий, полученных из электролитов с наноуглеродными добавками
Дипломная работа - Разное
Другие дипломы по предмету Разное
он растворяется медленнее железа. Легко растворяется в разбавленной азотной кислоте, концентрированная HNO3 пассивирует никель. С азотом никель не реагирует даже при высоких температурах (до 1400 оС). В щелочных растворах и расплавах никель устойчив, органические кислоты действуют на него лишь при длительном соприкосновении. Никель не разрушает витамины, не ядовит.
Недостатком никеля является способность поглощать большое количество газов, что ухудшает его механические свойства. Взаимодействие с кислородом начинается лишь при температуре 500 оС.
.2 Электроосаждение никеля
Никель можно наносить на Fe, Cu, Ti, Al и их сплавы, а также на неметаллические материалы - керамику, пластмассу, стекло и т.п.
Электроосаждение металлов железной группы (Ni, Fe, Cr) из растворов простых солей имеет ряд особенностей по сравнению с другими металлами. Разряд ионов металла протекает при высокой катодной поляризации и низком перенапряжении водорода, что создаёт определённые трудности, так как на катоде одновременно с металлом выделяется водород:
Ni2+.mH2O + 2e >Ni + mH2O;
H+ + 2e > H2^
Ионы никеля в электролите окружены оболочкой из дипольных молекул воды. В двойном электрическом слое часть молекул воды отрывается. Дегидратация последних молекул воды требует затрат энергии, что проявляется ростом перенапряжения, называемого химической поляризацией. При этом равновесный потенциал никеля даже при малых плотностях тока становится отрицательным. При низких значениях рН (ниже 1-2) никель почти не осаждается, и на катоде выделяется водород. По мере увеличения рН потенциал выделения водорода становится более отрицательным, и на катоде создаются условия для совместного выделения водорода и никеля. При этом доля выделения водорода тем меньше, чем выше рН. При высоких значениях рН вести осаждение никеля нельзя, так как начинается гидролиз. Продукты гидролиза (оксид и гидроксид никеля), внедряясь в покрытие, способствуют удержанию пузырьков водорода на поверхности катода, поэтому осажденный никель становится пористым, шероховатым и тёмным. При очень высоких значениях рН невооруженным глазом можно заметить на деталях зелёный осадок нерастворимых солей никеля. Для никелирования характерно явление, называемое питтингом. Пузырьки газообразного водорода задерживаются на катодной поверхности, и в этих местах становится невозможным дальнейший разряд никеля. Никель начинает разряжаться около пузырьков. На покрытии возникают поры, и оно теряет защитные и декоративные свойства.
Большое влияние на выход по току оказывает режим работы. При увеличении температуры выход по току никеля возрастает, так как вследствие ускорения процесса диффузии снижается химическая поляризация - потенциал осаждения никеля становится более положительным (рис. 1.1). Перенапряжение водорода при этом изменяется незначительно. Выход по току увеличивается при повышении концентрации ионов никеля в электролите. Такое же влияние оказывает и перемешивание раствора.
На рис. 1.2 показано влияние температуры на рабочий интервал плотностей тока. Интервал тем шире, чем выше температура и ниже рН. Таким образом, верхний предел плотности тока в более кислых электролитах значительно выше.
Режим работы оказывает большое влияние на физико-механические свойства никелевых покрытий. Твёрдые, напряжённые осадки получаются при рН 5,5, особенно при температуре ниже 20 оС. Повышение температуры приводит к некоторому снижению внутренних напряжений. Осадки, полученные при низких значениях рН, более мягки и эластичны.
При никелировании чаще всего применяют электролиты с рН 4,5-5,5. Такие электролиты имеют высокую рассеивающую способность, а осадки получаются мелкозернистыми. [1]
Рис. 1.1 Влияние температуры на выход по току при никелировании
Рис. 1.2 Влияние рН и температуры на рабочий интервал плотностей тока
.3Сернокислый электролит никелирования
В практике гальваностегии наибольшее распространение получили сернокислые электролиты. Большая часть современных электролитов для никелирования представляет собой разновидность электролита Уоттса. Учитывая широкую распространённость этого электролита, а также то обстоятельство, что он является основой для большинства современных электролитов блестящего никелирования, рассмотрим его более подробно. Концентрация основных компонентов в электролите находится в следующих пределах (г/л)
Сернокислый никель семиводный240-340
Хлористый никель шестиводный30-60
Борная кислота30-40
Все эти компоненты, как и рабочий режим, оказывают влияние на качество и физико-механические свойства получаемых гальванопокрытий. [3]
Назначение компонентов. Сернокислый никель является основным компонентом в ванне никелирования. Данная соль применяется в основном из-за её хорошей растворимости в воде, доступности и низкой цены. Соль содержит незакомплексованные ионы никеля и устойчивые анионы, которые не восстанавливаются на катоде и не окисляются на аноде. Сернокислый никель может применяться в растворе в высоких концентрациях вследствие его большой растворимости (460 г/л при температуре 20 оС, 570 г/л при 50 оС). [2]
Повышенная концентрация ионов никеля увеличивает предельную плотность тока и этим самым позволяет применять более высокие рабочие плотности тока, что является основой для интенсификации процесса никелирования.
Хлористый никель является поставщиком ионов хлора в серно-