Труды Эйлера

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

?ачало теории суммирования рядов, разложениям функций в тригонометрические ряды, теории специальных функций и определенных интегралов, дифференциальной геометрии поверхностей и, наконец, теории чисел, как особой науке.

В речи памяти Эйлера, произнесенной в Парижской академии наук, Кондорсе, описывая последние часы жизни Эйлера, сказал, что он кончил вычислить и жить. Эйлер, в самом деле, был неутомимым вычислителем как в узком, так и в широком смысле слова и, пожалуй, как никто, владел техникой раiетов. Эта особенность его гения отвечала потребности науки того времени, особенно нуждавшейся в быстром развитии формального аналитического аппарата. Но Эйлер был и мыслителем, внесшим огромный вклад в разработку фундаментальных идей математики, без чего также невозможно было се развитие, таких, как понятия числа, функции, функционала, суммы ряда, интеграла, решения дифференциального уравнения и т. д.

Вместе с тем оп создавал новую алгебраически-арифметическую архитектуру анализа. Правда, Эйлер уступал в построении обобщающих концепций более молодому Лагранжу, который ярче отразил в своей теории аналитических функций и аналитической механике духовные устремления эпохи просвещения, в других сферах мышления приведших к созданию новых больших философских, исторических, социально-политических систем. Не следует, однако, забывать, что Лагранж во многом непосредственно следовал за Эйлером, углубляя и совершенствуя его методы и концепции.

Влияние Эйлера было исключительно велико. Лаплас повторял молодым математикам: читайте Эйлера, он наш общий учитель. Прямых учеников у Эйлера было немного, по его труды были настольными в XVIII в. и далеко за его пределами для всех творческих математиков, а работу многих он непосредственно направлял путем переписки. Эйлер охотно и щедро делился своими мыслями и к нему применимы слова, сказанные Фонтенелем о Лейбнице: он любил наблюдать, как раiветают в чужом саду растения, семена которых он сам доставил.

Можно сделать вывод о том, что влияние Эйлера было очень велико.

эйлер математика физика астрономия

2.Труды Эйлера

2.1Ряд Эйлера-Маклорена

Эйлер и независимо от него, Маклорен открыли общий прием суммирования, примерами которого являются результаты Ньютона и Стирлинга и который выражает частную сумму бесконечного ряда sn = ? u (k) через другой ряд, члены которого содержат общий член u (n), его интеграл и производные. Впервые Эйлер привел формулу суммирования без доказательства и примеров употребления в работе 1732 г. Общий метод суммирования рядов (Methodus generalis summandi progressiones. Commentarii, (1732 -1733) 1738), вывод ее дан в статье Отыскание суммы ряда по данному общему члену, представленной Петербургской академии в 1735 г. (Inventiosummae enjusque seriei ex dato termino generali. Commentarii, (1736-1741).

Мы упоминали эту статью в связи с тем, что в ней ряд Тейлора записал в дифференциальных обозначениях. Обозначая общий член ряда X и сумму его х членов S, Эйлер разложил S (х-1) в ряд Тейлора, а X в ряд, из которого затем получил выражение S через X и его производные. Для этого он представил dS/dx рядом с неопределенными коэффициентами вида, так что

(постоянная интегрирования удовлетворяет тому условию, что при х = 0 также X = 0 и S = 0). Далее он дифференцированием нашел выраженние для d2S/dx2, d3S/dx3 и т. д. и подставил их, вместе с выражением для dS/dx, в разложение функции X, после чего, применяя метод неопределенных коэффициентов, получил уравнения, определяющие каждое из чисел ?, ?, ?, ?, ?.... через все предшествующие (iитая после первого?); это позволяет последовательно вычислить

? = 1, ? = 1/2, ? = 1/l2,? = 0, е = - 1/720, и т. д.

Еще раньше Эйлер обнаружил, что отношение двух последовательных чисел Бернулли B2n+2:B2n c ростом индекса неограниченно возрастает по абсолютной величине (Commentarii, (1739-1750). Поэтому бесконечный ряд Эйлера-Маклорена, вообще говоря, расходится. Тем не менее, формула суммирования может доставлять превосходные приближения, если ограничиваться частными суммами ряда с надлежащим числом членов. В только что упомянутой статье Эйлер дал новый способ вычисления ?, исходя из равенства arctg, приближенной замены интеграла на сумму и оценки разности arctg t - S по формуле суммирования.

Полагая t = 1, Эйлер получил и при n = 5 подiитал 12 верных десятичных знаков. Особенности поведения ряда он охарактеризовал при этом иiерпывающим образом и указал, что для приближенного вычисления следует взять сумму тех первых членов ряда, которые убывают до наименьшего включительно. Он даже сделал попытку оценить в данном случае степень приближения по числу использованных членов и первому отброшенному члену, но приведенную им оценку не обосновал.

Асимптотические ряды получили важные применения также у Лагранжа, Лапласа, Лежандра, который назвал эти ряда полусходящимися (series demi-convergentes), и других ученых. Впоследствии их изучали Коши, Пуассон, которые дали первые выражения остаточного члена, Якоби, Лобачевский, Остроградский и т. д. В широком плане к построению теории асимптотических разложений приступил Л. Пуанкаре (1886).Сама формула суммирования Эйлера - Маклорена является теперь однойиз основных в теории конечных разностей и ее приложениях.

.2Задача о колебаниях струны. Волновое уравнение (решение Эйлера).

Уже через год после появления первых работ Даламбера о струне Эйлер опубликовал статью О колебании струны (Sur la vibration descordes. Mem. Ac. Berlin, (1748) 1750), существенно углубившую анализ проблемы, о чем будет сказано